
Chapter 2
Worst-Case Execution Time Analysis

Real-Time Embedded Systems Laboratory
Northeastern University

Spring 2009 - Real-Time Systems
http://www.neu-rtes.org/courses/spring2009/

Presenter
Presentation Notes
http://www.neu-rtes.org/courses/spring2009/

http://www.neu-rtes.org/�
http://www.neu.edu.cn/�
http://www.neu-rtes.org/courses/spring2009/�

Objectives
 In this chapter, you are supposed to learn:
 What is WCET, and why WCET
 How to obtain the WCET of a program
 Static analysis methods and measurement-based methods
 Practices on WCET analysis of RTOS
 New challenges and future trends on WCET analysis

2009/3/92 Chapter 2: WCET Analysis

Contents

2009/3/9Chapter 2: WCET Analysis3

 An Introduction to WCET Analysis
 Static Analysis
 Measurement-Based Methods
 WCET Analysis of RTOS
 New Challenges and Future Trends
 Recommended Readings

An Example of Distributed RTS

2009/3/9Chapter 2: WCET Analysis4

The Need for Timing Validation

2009/3/9Chapter 2: WCET Analysis5

 An Example in Car Industry
 Today, a new car typically contains 80 ECUs
 The car electronic systems are provided by multiple OEMs
 The challenge of integration
 Increasingly complex processors are used

 Related reports show that

Other
Electronic
Problems

25%

Timing
Problems

30%

Other
Problems

45%

Breakdown Reasons

A Simplest Form of Exe. Time Variation

2009/3/9Chapter 2: WCET Analysis6

Void signal_processing (){
curr_signal = read_signal();
if (curr_signal < threshold){

signal_transformation(); // some +-*/ ops.
}
else{

error_handling_routine();
// complex error handling operations

}
}

In this signal processing task, the real operations performed depends
on the inputted signals. Different signals lead to different operations,
then different execution time.

Almost all real-life programs have variable execution time.

What is WCET?

2009/3/9Chapter 2: WCET Analysis7

Worst-case execution time of a task is NOT response time of a
task, the latter contains not only execution time, but also the
durations of preemptions and blockings.

Why WCET Analysis?

2009/3/9Chapter 2: WCET Analysis8

 Hard real-time systems must
satisfy stringent timing
constraints; whether the
constraints are satisfied or not
should be analyzed at design
time

 Real-time schedulability test
requires WCET of each task,
and an incorrect result leads to
timing failure

 On the right is an example of
the result led by incorrectly
estimated WCET

0 1 2 3 4

T1=(1, 4)

T2=(1, 4)

T3=(2, 4)

Task Set
Schedulable

0 1 2 3 4

Deadline
Missed!

WCET Analysis Quality

2009/3/9Chapter 2: WCET Analysis9

 Safety:
 The estimated upper bound should always enclose the actual

WCET

 Tightness:
 The estimated upper bound should be as close as possible to

the actual WCET

 Complexity:
 There is a trade-off between accuracy and analysis complexity
 Analyzers should balance it according to practical requirements

 The trade-off between analysis complexity and the quality
of results

Why Not Just Measure WCET?

2009/3/9Chapter 2: WCET Analysis10

Start Timing Measurement

Execute Tasks on Target HW

Stop Timing Measurement

TimerLogic Analyzer...

WCET Estimation?

Why Not Just Measure WCET?

2009/3/9Chapter 2: WCET Analysis11

 Why NOT?
 It is intractable to cover all execution traces of a program

(Think of a program with 10,000 loop iterations and an if-then-
else as the loop body, 210,000 traces)

 Hard to guarantee worst-case data input
 hard to simulate worst-case processor state
 Need real hardware

 BUT
 Measurement-based methods are easy to implement
 Can get a rough estimation of the execution time
 Compliment with other analysis techniques to make the results

trustworthy

Static Analysis Techniques

2009/3/9Chapter 2: WCET Analysis12

 How it works?
 Given a program executable and the hardware the program is

running, use mathematical methods to calculate the safe upper
bound without any simulation

 Pros
 Math theorems guarantee safety
 So mandatory in safe-critical hard real-time systems

 Cons
 Need to build complex mathematical models
 Long analysis time for complex programs

The Ingredients of WCET Analysis

2009/3/9Chapter 2: WCET Analysis13

 Flow Facts
 Flow facts give us information on the control flow of the

programs, such as infeasible paths and loop counts, etc.
 Automatic flow facts extraction and manual annotation
 How to annotate flow facts in the program

The Ingredients of WCET Analysis

2009/3/9Chapter 2: WCET Analysis14

 The Representation Levels of Programs
Matlab/Simulink – Component-based Design

C/C++/Java – High-Level Language Assembly or Machine Code
Int filtez(int *bpl, int *dlt)
{

int i;
long int zl;
zl = (long)(*bpl++)*(*dlt++);
for (i = 1; i < 6; i++)

zl+=(long)(*bpl++)*(*dlt++);
return ((int) (zl >> 14)); /* x2 here */

}

STMFD SP!, {LR}
STMFD SP!, {LR}
STMFD SP!, {R0-R12} ; Push registers
MRS R4, CPSR ; Push current CPSR
TST LR, #1 ; called from Thumb mode?
ORRNE R4, R4, #0x20 ; If yes, Set the T-bit
STMFD SP!, {R4}

Simple Single-
Core Processors

Complex Processors with
Pipeline and Cache

Multi-core
Processors

The Ingredients of WCET Analysis

2009/3/9Chapter 2: WCET Analysis15

 The Target Hardware

Hardware is becoming
more and more
complex, hard to
analyze!

Remarks on the Ingredients

2009/3/9Chapter 2: WCET Analysis16

 The Representation Levels of Programs
 Precise timing analysis has to be done after all program

transformations
 Generally, it is much easier to extract or annotate flow facts in a

higher representation level
 The flow facts should be mapped from higher level to lower level

correctly, probably this mapping is done in parallel to code
transformation

 Hardware in real-time systems are becoming more and
more complex with features to improve average-case
performance (throughput), but less predictable, e.g. timing
anomaly

Contents

2009/3/9Chapter 2: WCET Analysis17

 An Introduction to WCET Analysis
 Static Analysis
 Path Analysis
 Micro-Architecture Analysis

 Measurement-Based Methods
 WCET Analysis of RTOS
 New Challenges and Future Trends
 Recommended Readings

A Generic Workflow of Static Analysis

2009/3/9Chapter 2: WCET Analysis18

1 Compile source code into the binary of
target hardware

2 Reconstruct the Control-Flow Graph
from the binary

3 Model the HW architecture, calculate
the execution time of each basic block
in the CFG

4 Calculate the WCET using some DSE
tools, e.g. ILP solvers, constraint solvers,
model checkers

Figure from Chronos@NUS

An Example of the Workflow

2009/3/9Chapter 2: WCET Analysis19

Do micro-arch modeling to get
the execution time of each BB

Estimated WCET value

What is Path Analysis?

2009/3/9Chapter 2: WCET Analysis20

 Path Analysis
 To identify the execution trace that leads to the longest

execution time
 To identify infeasible paths of the program
 Path analysis is a “Design Space Exploration” problem

 Popular Techniques
 Tree-based methods (Timing Schema)
 Path-based methods
 Implicit Path Enumeration Technique (IPET)

Timing Schema

2009/3/9Chapter 2: WCET Analysis21

 Represent the program in a syntax tree
 Calculate the WCET of a program by folding the tree

Timing Schema

2009/3/9Chapter 2: WCET Analysis22

 Some General Assumptions
 No recursion
 Explicit function calls
 No “goto”s
 Bounded loop with single entry and single exit

 The Rules

An Example

2009/3/9Chapter 2: WCET Analysis23

An Example (2)

2009/3/9Chapter 2: WCET Analysis24

The Workflow of Timing Schema

2009/3/9Chapter 2: WCET Analysis25

 Decomposition
 Decompose a statement into its primitive components (atomic

blocks)

 Code Prediction
 Predict the implementation (compiled instructions) of each

atomic block

 Execution Time of the Atomic Blocks
 Calculate the execution times of the atomic blocks according

to the execution times of the instructions

 Execution Time of the Statements
 Calculate the execution times of the statements according to

the execution times of the atomic blocks

An Evaluation of Timing Schema

2009/3/9Chapter 2: WCET Analysis26

 Pros
 Simple method with cheap computation effort
 Scale very well with program size

 Cons
 Cannot deal with generic flexible program structures
 Limited ability on specifying flow facts
 Suffers compiler optimization

Path-Based Methods

2009/3/9Chapter 2: WCET Analysis27

 The upper bound is deter-
mined by: first calculating
the bounds of all paths, and
then searching the path
with longest execution time

 Possible paths are
represented explicitly

Model Checking

2009/3/9Chapter 2: WCET Analysis28

 Model Checking of WCET is Path Based
 The state space is all the possible program paths
 The model checkers deal with paths explicitly

 Basic Idea
 Construct the CFG of a program as input
 Transform the CFG into the MC model
 Search the path with the longest execution time

CFG Reconstruction – An Example

2009/3/9Chapter 2: WCET Analysis29

Loop entry

Loop Head

Loop Exit

Loop Tail

CFG  Model Checking Model

2009/3/9Chapter 2: WCET Analysis30

The model checker runs an FSM, where each box represents a state in the FSM, and
the arcs represent the transitions. Labels on arcs specify the transition conditions.

The Optimization Procedure

2009/3/9Chapter 2: WCET Analysis31

 We can ask the model checker “is it YES or NO that ‘for all
execution paths starting from the initial state, globally WCET is
not greater than N“.

 Additional procedures are needed to find the actual value of N

For example,
If the actual WCET is 100, then
TRUE, for N= 100
FALSE, for N= 99

Evaluation of the Path-Based Methods

2009/3/9Chapter 2: WCET Analysis32

 Pros
 Allows simple integration of HW modeling in the analysis

(expressiveness)
 Guaranteed exact results

 Cons
 Scalability problems (exponential state space)
 If you use model checkers, some unknown performance

bottlenecks may occur

Implicit Path Enumeration Technique

2009/3/9Chapter 2: WCET Analysis33

 Can obtain exact answer without exhaustive search of all
the paths

 Hint: the objective is to determine the worst-case
execution time, not the worst-case execution path

 Idea: finding the worst-case execution time  finding the
worst-case execution count of each basic block

Implicit Path Enumeration Technique

2009/3/9Chapter 2: WCET Analysis34

 Solutions
 The problem of finding the worst-case execution counts can be

formulated as an Integer Linear Programming (ILP) problem or
a constraint programming problem

 The more constraints, the more accurate results

Implicit Path Enumeration Technique

2009/3/9Chapter 2: WCET Analysis35

 Constraints – Restrictions on x-variables
 Structural constraints: extracted directly from the CFG

Implicit Path Enumeration Technique

2009/3/9Chapter 2: WCET Analysis36

 Constraints – Restrictions on x-variables
 Functional constraints: telling how the program works, e.g.

how many times a loop iterates

An Example of ILP Formulation

2009/3/9Chapter 2: WCET Analysis37

BB0

BB1

BB2 BB3

BB7

BB4 BB5

BB6

5

Sta

11

1 3

5

7 5

7 8

4

An Evaluation of IPET

2009/3/9Chapter 2: WCET Analysis38

 Pros
 Allows to consider complex flow facts
 Generation of constraints is simple and direct
 Efficient tools

 Cons
 Solving ILP is generally NP-hard (luckily, the WCET problem

can be reduced to network flow problem, which requires less
solving time)

 Still difficult to encode the flow facts that specify execution
ordering

Contents

2009/3/9Chapter 2: WCET Analysis39

 An Introduction to WCET Analysis
 Static Analysis
 Path Analysis
 Micro-Architecture Analysis

 Measurement-Based Methods
 WCET Analysis of RTOS
 New Challenges and Future Trends
 Recommended Readings

Micro-Architecture Analysis

2009/3/9Chapter 2: WCET Analysis40

 Why Micro-Architecture Analysis?
 The execution time depends not only on the program itself,

but also on the hardware where the program executes
 Modern processors have lots of complex features that can

result in unpredictable execution time variation, which is very
hard to analyze

 Timing Anomaly

 What Are Included in Micro-Architecture Analysis?
 Cache analysis
 Pipeline analysis (multiple issue, out-of-order pipelines)
 Branch prediction and speculative execution
 ……

Cache in a Nutshell

2009/3/9Chapter 2: WCET Analysis41

 Why Cache?
 The “memory wall”

Cache in a Nutshell

2009/3/9Chapter 2: WCET Analysis42

 Why Cache?
 Cost-speed trade-off
 Program temporal/spatial locality
 Memory hierarchy

Cache in a Nutshell

2009/3/9Chapter 2: WCET Analysis43

 Types of Caches
 L1 Instruction Cache (32KB)
 L1 Data Cache (32KB)
 L2/L3 Unified Cache (512KB ~ 6MB)
 Shared cache in multicores

 Associativity
 Cache are organized in terms of “cache lines”
 Associativity specifies how the cache lines are organized and

how to map a memory block into the cache
 Direct-mapped
 Full-associative
 Set-associative

Cache in a Nutshell

2009/3/9Chapter 2: WCET Analysis44

 Direct-mapped Cache

i = x % n;

Easy to implement

Fast scan

But high miss ratio!

Cache in a Nutshell

2009/3/9Chapter 2: WCET Analysis45

 Full-associative Cache

A memory block can be mapped
to any cache line if not occupied

Efficient use of the cache

But notorious scan and
replacement overhead!

Cache in a Nutshell

2009/3/9Chapter 2: WCET Analysis46

 Set-associative Cache

i = (x % #sets) + A (0≤A≤set size)

A clever trade-off between direct-mapped
caches and full-associative caches

Much less overhead than FA, but still harder to
analyze than DM

Good news to GP-architecture guys, but not so
good to Real-Time guys

Cache in a Nutshell

2009/3/9Chapter 2: WCET Analysis47

 Replacement Policy
 If cache miss occurs, kick out which cache line?
 Round-robin, LRU, pseudo-LRU
 Different cache replace policies have different predictability

 Write Policy
 Write-through: whenever there is a write to the cache content,

the data is immediately written to the corresponding main
memory address, regardless of hits or misses

 Write-back: only write dirty cache data to main memory when
the cache block is replaced, requires special bits in cache to tag
dirty data

Cache Analysis in WCET Analysis

2009/3/9Chapter 2: WCET Analysis48

 Without cache analysis
 In each BB, all memory accesses take fixed cycles, no variation
 The execution time of a BB is not affected by the execution

history
 When there is cache, all the situations are different

 Analysis of different types of caches
 I-cache with different replacement policy
 I-cache or D-cache?
 Single-level or multi-level?
 Dedicated cache or shared cache?

Cache Analysis in the IPET Framework

2009/3/9Chapter 2: WCET Analysis49

 Idea
 Model new constraints related to cache behavior into the

original ILP problem
 No fundamental changes to the structure of the ILP problem

 How to?
 For each instruction, determine

 Cache hit execution counts, time
 Cache miss execution counts, time
  go into the basic blocks

Line Blocks

2009/3/9Chapter 2: WCET Analysis50

 The objective cache analysis is to determine how many
misses and hits in each BB  analyze conflicting memory
blocks

Modified ILP Formulation

2009/3/9Chapter 2: WCET Analysis51

New Cache Constraints

2009/3/9Chapter 2: WCET Analysis52

Cache Conflict Graph (CCG)

2009/3/9Chapter 2: WCET Analysis53

Generating Constraints from CCG

2009/3/9Chapter 2: WCET Analysis54

Tightening the Constraints

2009/3/9Chapter 2: WCET Analysis55

 Assumptions for the Example
 Each BB is mapped to a single cache line
 BB1 conflicts with BB6, BB4 conflicts with BB5

p(4.1, 5.1) = 0

Tightening the Constraints

2009/3/9Chapter 2: WCET Analysis56

x3 = 10·x1

x7 = 10·x5

x4 = 9·x1

We already know:

But this needs to be tightened:

Inter-Procedure Calls

2009/3/9Chapter 2: WCET Analysis57

 d1 = 1, x1 = d1 = f1, x2 = f1 = f2, d2.f1 = f1
 x3.f1 = d2.f1 = d3.f1, d2.f2 = f2
 x3.f2 = d2.f2 = d3.f2, x3 = x3.f1 + x3.f2
 Xhit3.1 = p(3.1.f1, 3.1.f2)

Direct-Mapped  Set-Associative

2009/3/9Chapter 2: WCET Analysis58

 What’s the Difference?
 Since conflicting domains are set-associative sets, there are

more potential conflicts to be analyzed
 Cache replacement policy affects analysis

 What to do?
 We need to maintain cache states

 CCG  CSTG (a more concrete form of CCG)
 Cost function is unchanged, but cache constraints are different

now

∑= −
n

i im
m

0)!(
!

Cache State Transition Graph

2009/3/9Chapter 2: WCET Analysis59

New Cache Constraints

2009/3/9Chapter 2: WCET Analysis60

1 The execution count of Bm,n = the sum of inflow with Bm,n in the right most line entry

2 For each node, sum of inflow = sum of outflow

3 Starting condition

4 Cache hit lower bound:

Data Cache Analysis

2009/3/9Chapter 2: WCET Analysis61

 Two sub-problems
 Determine load/store addresses
 Model worst case data cache hit/miss counts

 Difficulties
 L/S addresses may be ambiguous or may change, usually

dynamic data structures are banned for static analysis
 Data flow analysis is required

 Solutions
 Extend cost functions to include data cache miss penalties
 Use linear constraints to solve address ambiguity problems

Two-Level Analysis

2009/3/9Chapter 2: WCET Analysis62

 Data flow analysis
 To determine the absolute data addresses of LD/ST

instructions
 Very difficult, but algorithms already established

 Data cache conflict analysis
 Given the results of data flow analysis, construct a data cache

conflict graph, and use ILP techniques to bound the data cache
hit and miss counts

 Cinderella works on the second sub-problem

Modified Cost Functions

2009/3/9Chapter 2: WCET Analysis63

Data Cache Conflict Graph

2009/3/9Chapter 2: WCET Analysis64

 Idea
 By data flow analysis, we can identify a set of possible data

addresses accessed by LD/ST instr.

 Different LD/ST instructions that access the addresses in the
same data cache set may leads to data cache miss

 Similar to I-cache analysis, use data cache conflict graph to
capture the control flow of LD/ST instructions to analyze
potential data hits and misses

Data Cache Conflict Graph

2009/3/9Chapter 2: WCET Analysis65

Assume data cache is direct-mapped, and each cache
line has 4 bytes

Data address rage [0x100, 0x124] span 10 data cache
lines

Take the set at 0x100 for example, see the graph on the
left

New Constraints

2009/3/9Chapter 2: WCET Analysis66

 In D-CCG, sum of inflow = sum of outflow

 The bounds on the execution counts of each LD/ST
instruction instance

 Hit and miss relation
 LD-incurred cache miss is similar to instruction cache
 ST-incurred cache miss depends on write policies: write

through or write back, with/without write allocate

An Evaluation of the Above Analysis

2009/3/9Chapter 2: WCET Analysis67

 Pros
 An elegant way to integrate hardware modeling into WCET

calculation

 Cons
 The number of ILP constraints grows greatly, because the CCG

is a fine-grained representation of cache states
 So the time to solve the ILP problem may be very long, not

feasible for real-life programs

 Solutions
 Try some other methods that can do cache analysis in a more

coarse-grained way by sacrificing some precision

Timing Anomaly

2009/3/9Chapter 2: WCET Analysis68

 Counterintuitive Behaviors

Timing Anomaly

2009/3/9Chapter 2: WCET Analysis69

 A Formal Definition
 ∆t – Latency variations of several instructions S’ (the whole

instruction sequence is S)
 ∆C – execution time change of the whole instruction sequence

 As long as one of the following conditions hold, we say
that a timing anomaly occurs
 ∆t > 0  ∆C < 0
 ∆t < 0  ∆C > 0
 ∆t > 0  ∆C > ∆t
 ∆t < 0  ∆C < ∆t

Domino Effect

2009/3/9Chapter 2: WCET Analysis70

Possible Solutions

2009/3/9Chapter 2: WCET Analysis71

 Occurrence of timing anomalies depends on both
hardware features and code structure

 How to eliminate timing anomalies?
 De-active caches
 Use synchronization points
 Choose more predictable hardware platform
 Code reordering

Contents

2009/3/9Chapter 2: WCET Analysis72

 An Introduction to WCET Analysis
 Static Analysis
 Measurement-Based Methods
 WCET Analysis of RTOS
 New Challenges and Future Trends
 Recommended Readings

A Review of Problems of Static Analysis

2009/3/9Chapter 2: WCET Analysis73

 Problems of Static Analysis
 Computation efforts exerted to cover all possible situations 

possible scalability problems
 Hard to conduct micro-architecture models
 Micro-arch analysis of complex hardware may encounter

scalability problems

 So Measurement-Based Methods
 What can we benefit from it?
 How to do measurement-based analysis?
 What are the technical issues?

Measurement-Based Methods
– The Big Picture

2009/3/9Chapter 2: WCET Analysis74

Tool Architecture

2009/3/9Chapter 2: WCET Analysis75

Issues in Measurement-Based Methods

2009/3/9Chapter 2: WCET Analysis76

 How to measure?
 Measurement tools: HW, SW
 End-to-end, or just measure code segments?

 How to cover more execution traces?
 Due to worst-case input
 Due to worst-case hardware states
 Path/Trace coverage

 What do the results reveal?
 Single WCET value, or a ET distribution?
 This issue equals “what’s the use of measurement-based

methods?”

How to Measure?

2009/3/9Chapter 2: WCET Analysis77

 End-to-end or measuring code segments?
 End-to-end is easy, but inaccurate, intractable
 Measurement of code segments + Calculation

 How to Measure?
 Software instrumentation

 Put time recording in the analyzed codes
 Accuracy?

 Hardware instrumentation
 Logic Analyzers, oscilloscopes, …

Hardware Instrumentation

2009/3/9Chapter 2: WCET Analysis78

Execution Time Measurement Framework

2009/3/9Chapter 2: WCET Analysis79

Instrumentation Methods

2009/3/9Chapter 2: WCET Analysis80

 Requirements
 Instrumentations (IPs) may not alter program flow or

execution time in an unknown or unpredictable way. IPs have
to be persistent if changing either.

 Execution always starts with the same (known) state (cache,
pipeline, branch prediction, ...)

 Design Decisions
 Control flow manipulation? Input data generation?
 Number of measurement runs?
 Resource consumption?
 Required devices?
 Installation effort?

The Steps of Measurement-Based Analysis

2009/3/9Chapter 2: WCET Analysis81

1. Static analysis: reconstruct CFG from the code
2. Program partitioning
3. Test data generation
4. Execution time instrumentation
5. WCET calculation

 This is only one exemplary workflow, other measurement-
based methods may have different workflow

Program Partitioning

2009/3/9Chapter 2: WCET Analysis82

 What is a program segment?
 Roughly a sub-graph of the CFG

 Why program partitioning?
 Reduce problem state space  reduce

analysis efforts
 Precision is sacrificed

 Partitioning granularity
 Fewer segments  less instrumentation

efforts but higher analysis computation
overhead

 “Good” partitioning
 Balance “the # of program segments” and

“the average # of paths per segment”

Program Partitioning

2009/3/9Chapter 2: WCET Analysis83

 An Example of Program Partitioning

Test Data Generation

2009/3/9Chapter 2: WCET Analysis84

 What is the so-called “test data”?
 Roughly, the values of a set of variables that leads to one of the

paths of a program segment

 What is the use of “test data”?
 Put code instrumentations at the segment boundaries, and set

the test data to some specific values, which can leads the
program to the desired path

 How to obtain “test data”? – model checking

Test Data Generation

2009/3/9Chapter 2: WCET Analysis85

Test Data Generation

2009/3/9Chapter 2: WCET Analysis86

 Execution Time Measurement
 Use software instrumentation to guide the program
 Use hardware instrumentation to measure execution time

 Enforcing Predictable Hardware States
 Challenge: on complex hardware where the instruction

timing depends on the execution history
 Code instrumentations can be used to enforce an a-priori

known state at the beginning of a program segment, thus
avoiding the need for considering the execution history

 WCET Calculation
 Use ILP, Model Checking, or any optimization tools to do

longest path search

Probabilistic WCET Analysis

2009/3/9Chapter 2: WCET Analysis87

 What is probabilistic WCET analysis?
 It gives you a distribution of the execution time of a program,

instead of single WCET value

 Why probabilistic WCET analysis?
 To determine the probability distribution of the execution

times of tasks, then used to do probabilistic schedulability
analysis in soft real-time systems

 Helping to detect the “WCET hotspot”, used for WCET
reduction

 Helping to analyze the execution behaviors of a program

Probabilistic WCET Analysis

2009/3/9Chapter 2: WCET Analysis88

 Solution: Probabilistic Timing Schema
 Timing Schema

 W(A) = exec time A
 W(A;B) = W(A)+W(B)
 W(if E then A else B) = W(E) + max(W(A), W(B))

 Probabilistic Timing Schema
 Sequential execution: Z = X + Y
 Distribution functions: F(x) = P[X ≤ x], G(y) = P[Y ≤ y]
 To compute H(z) = P[X + Y ≤ z]
 If X and Y are independent
 If joint distribution between X and Y is given as J(x, y)
 If the joint distribution is unknown

Probabilistic WCET Analysis

2009/3/9Chapter 2: WCET Analysis89

 Probabilistic Timing Schema
 Conditional execution: Z = max(X, Y)
 Z = E + max(X, Y), max(X, Y) has the distribution H(z)

 Iteration: can be analyzed as a combination of sequence execution and
conditional execution, loop bounds should be known

 Determining Probability Distributions
 To determine the actual distribution of the execution times of

individual units (basic blocks)
 Run the units under a large number of test scenarios

The pWCET Analysis Tool

2009/3/9Chapter 2: WCET Analysis90

Obtaining execution traces. This is done by manually or automatically
inserting instrumentation calls into the source code, or by automatically
adding instrumentation codes into the compiled assembly code

In this step, the CFG of the assembly code is
reconstructed, and then converted into a syntax tree

Compute the distribution functions of each node from the traces;
Determine the joint distribution function of pairs of nodes;
Loop identification, loop iteration extracted;
This step is VERY computation expensive!!

Generate a program for WCET calculation, this is based on
separating the timing analysis into a program generation part and
an execution part.
The generator traverses the tree in reversed order and applies
the timing schema rules, and the results is a set of commands on
how to compute the timing program for the given tree.

Run the generated program with the program to
be analyzed, and calculate the probabilistic
distribution of the execution times of the program.

RapiTime Exemplary Results Report

2009/3/9Chapter 2: WCET Analysis91

A Survey of WCET Tools

2009/3/9Chapter 2: WCET Analysis92

A Survey of WCET Tools

2009/3/9Chapter 2: WCET Analysis93

 Support of Architectural Features

Contents

2009/3/9Chapter 2: WCET Analysis94

 An Introduction to WCET Analysis
 Static Analysis
 Measurement-Based Methods
 WCET Analysis of RTOS
 New Challenges and Future Trends
 Recommended Readings

Introduction of This Research Topic

2009/3/9Chapter 2: WCET Analysis95

 Real-Life Real-Time Systems are Composed of
 RTOS
 Applications

 Timing Correctness of a Real-Time System is guaranteed
by
 Schedulability analysis in the high level
 WCET analysis in the low level

 Applying WCET tools for application programs to RTOS
 Poor results are reported (up to 86% pessimism)
 Hard to handle some RTOS specific programs

 Additional analysis techniques are required!

WCET Analysis of RTEMS

2009/3/9Chapter 2: WCET Analysis96

 Research Group
 Antoine Colin & Isabelle Puaut @ IRISA

 Experiment Setup
 WCET tool: Heptane (tree-based)
 RTOS: RTEMS
 Manual revision to codes
 12 out of 85 system calls, span across 91 files, 14,532 LOC

WCET Analysis of RTEMS

2009/3/9Chapter 2: WCET Analysis97

 Problem 1: unstructured control flow
 Such as goto statements, multiple loop exits, …
 Because Heptane is a tree-based WCET analysis tool
 Consequences: (1) rewriting the codes; (2) only a small subset

of RTEMS system calls are analyzed

 Problem 2: Dynamic function calls implemented through
function pointers
 Real called functions are determined at runtime
 Solutions: replace them with static ones

WCET Analysis of RTEMS

2009/3/9Chapter 2: WCET Analysis98

 Problem 3: Hard to determine loop bounds since the
loop bounds are related to dynamic runtime behaviors
 Task queue, message queue manipulation
 Solution: Manually bound loops by an investigation of RTOS

codes

 Problem 4: Blocking system calls
 Problem 5: Context switch overhead

 Putting them all together, an average of 86% pessimism in
the estimated results is reported

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis99

 Challenges to WCET Analysis – Side Effects
 It is apparent that the state space can be reduced via

composable or hierarchical design/analysis
 Side effects are defined as task interactions that cannot be

traced back to task interface. For example, the shared cache
may enable task A to influence the execution time of task B by
displacing B’s data in the shared region.

 Side effects are a big problem to composable timing analysis

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis100

 Side Effects in Simple Hardware Architectures
 Variable program execution time due to

 Unpredictable data input
 Instructions with variable execution cycles dependent on operands

 In Complex Hardware Architectures
 Different task instances may have different execution time
 Scheduling without preemption: task instances from different

tasks may execute alternatively, creating complex hardware
states which are hard to predict

 Scheduling with preemption: HW states change at preemption
points, hard to predict when preemption will happen

 Modern complex pipelines  flush not practical

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis101

 Side Effects in Multicore Processors
 Shared cache: if two tasks on two different cores share the

same cache lines, it is hard to bound the effects of mutual
replacement of cache contents

 Other shared resources have similar problems
 Simultaneous Multi-Threading (SMT): also called hyper-

threading by Intel, multiple tasks on the same core share the
function units at instruction level, hard to analyze the execution
time of each task with good precision

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis102

 Solutions
 The basic philosophy of Puschner’s solutions is to try every

possibility to AVOID unwanted interactions
 (1) The use of single-path code in all tasks
 (2) The execution of a single task/thread per core
 (3) The use of simple in-order pipelines
 (4) Statically scheduled access to shared memory in CMPs

 The solutions require redesign in both hardware and software
(at both system level and application level)

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis103

 An RTOS for a Time-Predictable Computing Node

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis104

 Requirements on Hardware Architectures
 The execution times of instructions are independent of the

operand values
 The CPU support a conditional move instruction having

invariable execution times
 Direct-mapped or set-associative caches with LRU
 Memory access times are invariable for all data items
 The CPU has a programmable instruction counter that can

generate an interrupt when a given number of instructions has
been completed

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis105

 The SW Architecture – Task Model
 Simple Task Model

 I/O operations will never block a task
 No statements for explicit I/O or synchronization within a task
 All inputs are ready at task startup
 Outputs are ready in the output variables when the task completes

 Single-path Tasks
 Transformation techniques

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis106

 Single-Path Transformation

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis107

 The SW Architecture – RTOS
 There must be no jitter in the execution times of the RTOS

routines
 Kernel designed using the single-path techniques
 Communications: messages are scheduled at fixed time off-line

1 Local buffer accessed by tasks
2 Global buffer managed by IPC
3 Inter-node communication
4 Message schedule defined off-line

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis108

 The SW Architecture – RTOS
 Scheduler

 Time-triggered
 Schedule is determined off-line
 Scheduler invoked at each global clock tick
 Mode-switch is implemented by schedule switch, also determined off-

line
 Tasks are divided into “initialization phase” and “real-time phase”, the

former is non-real-time, the latter is managed by the RTOS

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis109

 An Example

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis110

 Evaluations
 Puschner has posed insights on design for predictability
 Single-path technique is too costly and rigid
 Requiring both specialized hardware and software (RTOS) may

be impractical
 In all, the ultimate predictability is achieved at the cost of

system flexibility

Combined Schedulability & WCET Analysis

2009/3/9Chapter 2: WCET Analysis111

 Schneider studied combined schedulability & WCET
analysis in his Ph.D. thesis, issues discussed in his work
include
 The quality of WCET analysis of RTOS can be improved by

considering both the applications and the RTOS
 In real-life multitasking real-time systems, tasks are executed in

an interleaving manner (interruptions), but this is not
considered in traditional WCET analysis, under such a
circumstance, both scheduling and WCET must be re-think

Combined Schedulability & WCET Analysis

2009/3/9Chapter 2: WCET Analysis112

 Why Combined Schedulability & WCET Analysis?
 Traditional schedulability and WCET analysis are performed in

a hierarchical manner where the WCETs of the tasks are
calculated first, then the results are fed to schedulability
analysis

 It is implied that even a task is interrupted, the WCET of all its
segments equals the WCET of the task without interruptions

 In multi-tasking systems running on complex hardware, the
assumptions for hierarchical analysis is invalidated

Combined Schedulability & WCET Analysis

2009/3/9Chapter 2: WCET Analysis113

 Why the assumption is invalidated?
 As we have discussed in previous slides, the WCET of a

program highly depends on the processor states in presence of
complex hardware

 If a program is interrupted during execution, when it resumes,
the hardware state is not identical to that at the interruption
point, the influences are complex:
 Some needed cache contents are swapped out, so the WCET in

presence of interruption is larger than that without interruption
 If timing anomaly occurs, the displacement of cache contents may

leads to a smaller WCET

Combined Schedulability & WCET Analysis

2009/3/9Chapter 2: WCET Analysis114

 How to deal with these problems?
 Consider the scheduling behavior within the WCET analysis

process, and capture the state change at the interruption
points

 Re-calculate the WCET by considering the state change
 Re-do schedulability analysis with new WCET values

Combined Schedulability & WCET Analysis

2009/3/9Chapter 2: WCET Analysis115

 The Old and New Analysis Framework

A Summary of Research Practices in WCET
Analysis of RTOS

2009/3/9Chapter 2: WCET Analysis116

A Summarization of Problems

2009/3/9Chapter 2: WCET Analysis117

 Problem 1: Irreducible program structures
 Solution: choose a proper WCET tool

 Problem 2: Lack of application information greatly affects
analyzability and the precision of the results
 Bounding loops
 Dynamic function calls and blocking system calls
 System call context and RTOS working mode
 Solution: extract helpful information from applications

 Problem 3: multi-tasking
 Solution: develop analysis techniques that can safely bound the

effects of task switching

Challenges on WCET Analysis of RTOS

2009/3/9Chapter 2: WCET Analysis118

 Does Single WCET Value Suffice?
 The running of RTOS is mode-based, so a single WCET value

regardless of execution mode is not sensible
 Related techniques, such as parametric ILP should be

developed

 Considering Both Applications and RTOS
 Application information may be very useful to RTOS analysis,

e.g. bounding loops
 What kinds of application information should be

communicated to the analyzer?
 How can these information be communicated to the analyzer?

Challenges on WCET Analysis of RTOS

2009/3/9Chapter 2: WCET Analysis119

 Combined Schedulability and WCET Analysis
 There is a mutual communication between schedulability

analysis and WCET analysis
 Control of the state space explosion

 Raising the Degree of Automation
 Almost all related research practices reported low degree of

automation in the analysis
 WCET tool designers must always keep the issue of

“automation” in mind when designing tools
 The degree of automation is the largest factor that affects the

usability of a WCET tool

Challenges on WCET Analysis of RTOS

2009/3/9Chapter 2: WCET Analysis120

 Managing Analysis Complexity in the Multicore Era
 Problem: fine-grained access to shared resources (L2 cache,

on-chip bus, …), and for most existing architectures, we have
very limited ability to control the behavior of these shared
resources

 Solution: Performance isolation techniques (cache partitioning),
since such techniques can “create” an isolated environment for
each core, and at the same time still maintains the flexibility
that shared resources provide with

Challenges on WCET Analysis of RTOS

2009/3/9Chapter 2: WCET Analysis121

 To Design or to Analyze?
 Analyze

 No need to change existing hardware or system; analysis must be
done if you’re to analyze fabricated systems

 But lots of hardware features or management policies are not
designed for real-time, these features make the analysis very hard

 To guarantee predictability on unpredictable hardware, a lot of
pessimism is introduced into the results  system over design

 Design
 To design hardware or software with the consideration of real-time

from scratch can yield very predictable systems
 Predictability is achieved by sacrificing flexibility
 New hardware requires re-design of the system, from hardware, to

programming tools, to OS and applications
 A Graceful Balance!

Cache Partitioning and Locking

2009/3/9Chapter 2: WCET Analysis122

Partitioning is used to avoid inter-task interference regardless of single- or multi-core.
Locking is used to enforce predictability in terms of cache hits/misses

Contents

2009/3/9Chapter 2: WCET Analysis123

 An Introduction to WCET Analysis
 Path Analysis
 Micro-architecture Analysis
 A Survey of Academic and Industrial WCET Tools
 WCET Analysis of RTOS
 New Challenges and Future Trends
 Recommended Readings

Trends in Hardware

2009/3/9Chapter 2: WCET Analysis124

 More software control
 Software-controlled cache locking
 Scratchpad memory
 More predictable caches or pipelines

 Multi-core processors
 + multiple simple cores
 - Shared cache  inter-task interference
 - Share whatever, on-chip buses or networks

 Execution Behavior
 Traditionally, researchers assume single task execute on single

core, but this is not necessarily the whole story
 A big gap between WCET and ACET

Trends in Software

2009/3/9Chapter 2: WCET Analysis125

 Levels of Abstraction
 Traditionally C code or assembly code
 A trend towards higher-level abstraction, e.g. OO languages,

model-based design
 More dynamic control structure, hard to reconstruct CFG
 more dynamic data structure, memory access
 Java VM, JIT compilation

 Component-based design
 FSM synthesize highly unstructured code
 Parameterized execution time/WCET

Trends in Analysis Techniques

2009/3/9Chapter 2: WCET Analysis126

 WCET-aware Compilation
 Try to tackle the analysis complexity problem in compilers
 Develop compilers that can generate predictable codes

 Raise Automation Level
 Automatic extraction of flow facts, less user intervention
 Flow facts mapping across different representation levels

 Parametric WCET Analysis
 Obtain a function for WCET results, instead of a single WCET

value

 Integrate WCET analysis with power-aware techniques
 Integrate WCET analysis with scheduling analysis

Contents

2009/3/9Chapter 2: WCET Analysis127

 An Introduction to WCET Analysis
 Path Analysis
 Micro-architecture Analysis
 A Survey of Academic and Industrial WCET Tools
 WCET Analysis of RTOS
 New Challenges and Future Trends
 Recommended Readings

Recommended Readings

2009/3/9Chapter 2: WCET Analysis128

 Books
 Flemming Nielson, et al, Principles of Program Analysis, Springer, 2004.

 John L. Hennessy and David A. Patterson, Computer Architecture, A Quantitative Approach, 4th edition,
Elsevier, 2006.

 Mostafa Abd-El-Barr and Hesham El-Rewini, Fundamentals of Computer Organization and Architecture, John
Wiley & Sons, 2005.

 Related Course Pages
 http://ti.tuwien.ac.at/rts/teaching/courses/wcet-ss08

 Referenced Papers
 Surveys and Overview Papers
 R. Wilhelm, et al. The worst-case execution-time problem—overview of methods and survey of tools. Trans. on

Embedded Computing Sys., 7(3):1–53, 2008.

 Mingsong Lv, Nan Guan, Yi Zhang, Qingxu Deng, GeYu, Static Timing Analysis of Real-Time Opearting Systems –
Survey of Research and New Challenges, NEU-RTES lab report, 2008.

 Bjorn Lisper. Trends in Timing Analysis. 2006.

 C. Ferdinand and R. Heckmann. Worst-case execution time - a tool provider’s perspective. In ISORC 2008.

 Raimund Kirner, Peter Puschner. Classification of WCET Analysis Techniques. In ISORC 2005.

 Rainmund Kirner, Peter Pushner. Obstacles in Worst-Case Execution Time Analysis. In ISORC 2008.

Recommended Readings

2009/3/9Chapter 2: WCET Analysis129

 J. Gustafsson. Usability aspects of wcet analysis. In ISORC 2008.

 J. Gustafsson and A. Ermedahl. Experiences from applying wcet analysis in industrial settings. In ISORC 2007.

 Jan Gustafsson, et al. ALL-TIMES – a European Project on Integrating Timing Technology. 2008.

 Static Analysis
 Xianfeng Li, et al. Chronos: A Timing Analyzer for Embedded Software. 2006.

 Yau-Tsun Steven Li, et al. Cinderella: A Retargetable Environment for Performance Analysis of Real-Time Software.
In EuroPar 1997.

 Yau-Tsun Steven Li, et al. Performance Analysis of Embedded Software Using Implicit Path Enumeration. In DAC
1995.

 Yau-Tsun Steven Li, et al. Performance Estimation of Embedded Software with Instruction Cache Modeling. 1999.

 Yau-Tsun Steven Li, et al. Cache Modeling for Real-Time Software: Beyond Directed-Mapped Instruction Caches.
1996.

 Mingsong Lv, et al. Performance Comparison of Techniques on Static Path Analysis of WCET. In EUC 2008.

 T. Lundqvist and P. Stenstrom. Timing Anomalies in Dynamically Scheduled Microprocessors. In RTSS 1999.

 J. Reineke, et al. A Definition and Classification of Timing Anomalies. In WCET 2006.

 Measurement-Based Analysis
 Ingomar Wenzel, et al. Measurement-Based Timing Analysis. 2008.

Recommended Readings

2009/3/9Chapter 2: WCET Analysis130

 Ingomar Wenzel. Measurement-Based Timing Analysis of Superscalar Processors. Ph.D. thesis, 2006.

 Guillem Bernat, et al. pWCET: a Tool for PrebabilisticWorst-Case Execution Time Analysis of Real-Time Systems.
2003.

 Guillem Bernat, et al. WCET Analysis of Probabilistic Hard Real-Time Systems. In RTSS 2002.

 WCET Analysis of RTOS
 M. Carlsson, J. Engblom, A. Ermedahl, J. Lindblad, and B. Lisper. Worst-case execution time analysis of disable

interrupt regions in a commercial real-time operating system. 2002.

 D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper. Static timing analysis of real-time operating system code. In
1st International Symposium on Leveraging Applications of Formal Methods, 2004.

 A. Colin and I. Puaut. Worst-case execution time analysis of the rtems real-time operating system. 13th Euromicro
Conference on Real-Time Systems, 2001.

 G. Khyo, P. Puschner, and M. Delvai. An operating system for a time-predictable computing node. The 6th IFIP
Workshop on Software Technologies for Future Embedded and Ubiquitous Systems, pages 150–161, 2008.

 P. Puschner and M. Schoeberl. On composable system timing, task timing, and wcet analysis. In WCET 2008.

 P. Puschner. Transforming execution-time boundable code into temporally predictable code. In 17th World
Computer Congress - Stream on Distributed and Parallel Embedded Systems, 2002.

 J. Schneider. Combined schedulability and wcet analysis for real-time operating systems. Ph.D. thesis of Saarland
University, Germany, 2002.

Recommended Readings

2009/3/9Chapter 2: WCET Analysis131

 J. Schneider. Why you can’t analyze rtoss without considering applications and vice versa. 2nd International
Workshop on Worst-Case Execution Time Analysis, 2002.

 M. Singal and S. M. Petters. Issues in analysing l4 for its wcet. Proceedings of the 1st International Workshop on
Microkernels for Embedded Systems, 2007.

 Vivy Suhendra, Tulika Mitra. Exploring Locking & Partitioning for Predictable Shared Caches on Multi-cores.
In DAC 2008.

 Tools & Projects
 ALL-Times: http://www.mrtc.mdh.se/projects/all-times/

 aiT: www.ait.com

 Bound-T: www.tidorum.fi/bound-t/

 RapiTime: www.rapitasystems.com

 SymTA/P:

 Heptane: http://www.irisa.fr/aces/work/heptane-demo/heptane.html

 Vienna: http://www.wcet.at/

 SWEET: http://www.mrtc.mdh.se/projects/wcet/

 OTAWA: http://www.otawa.fr/

 Chalmers: http://www.ce.chalmers.se/research/group/hpcag/project/wcet.html

 Chronos: http://www.comp.nus.edu.sg/~rpembed/chronos/

http://www.mrtc.mdh.se/projects/all-times/�
http://www.ait.com/�
http://www.tidorum.fi/bound-t/�
http://www.rapitasystems.com/�
http://www.irisa.fr/aces/work/heptane-demo/heptane.html�
http://www.wcet.at/�
http://www.mrtc.mdh.se/projects/wcet/�
http://www.otawa.fr/�
http://www.ce.chalmers.se/research/group/hpcag/project/wcet.html�
http://www.comp.nus.edu.sg/~rpembed/chronos/�

Visit Our Website 

2009/3/9Chapter 2: WCET Analysis132

 The Website of Real-Time Embedded Systems Laboratory,
Northeastern University
 http://www.neu-rtes.org
 http://www.neu-rtes.org/courses/spring2009/

 You can find
 General information on the projects conducted in our lab
 Research and publications
 Research information and contacts of the members
 Some useful research links

 Write me emails if you have questions in WCET or RTS
 mingsong@research.neu.edu.cn

http://www.neu-rtes.org/�
http://www.neu-rtes.org/courses/spring2009/�
mailto:mingsong@research.neu.edu.cn�

	Chapter 2�Worst-Case Execution Time Analysis
	Objectives
	Contents
	An Example of Distributed RTS
	The Need for Timing Validation
	A Simplest Form of Exe. Time Variation
	What is WCET?
	Why WCET Analysis?
	WCET Analysis Quality
	Why Not Just Measure WCET?
	Why Not Just Measure WCET?
	Static Analysis Techniques
	The Ingredients of WCET Analysis
	The Ingredients of WCET Analysis
	The Ingredients of WCET Analysis
	Remarks on the Ingredients
	Contents
	A Generic Workflow of Static Analysis
	An Example of the Workflow
	What is Path Analysis?
	Timing Schema
	Timing Schema
	An Example
	An Example (2)
	The Workflow of Timing Schema
	An Evaluation of Timing Schema
	Path-Based Methods
	Model Checking
	CFG Reconstruction – An Example
	CFG  Model Checking Model
	The Optimization Procedure
	Evaluation of the Path-Based Methods
	Implicit Path Enumeration Technique
	Implicit Path Enumeration Technique
	Implicit Path Enumeration Technique
	Implicit Path Enumeration Technique
	An Example of ILP Formulation
	An Evaluation of IPET
	Contents
	Micro-Architecture Analysis
	Cache in a Nutshell
	Cache in a Nutshell
	Cache in a Nutshell
	Cache in a Nutshell
	Cache in a Nutshell
	Cache in a Nutshell
	Cache in a Nutshell
	Cache Analysis in WCET Analysis
	Cache Analysis in the IPET Framework
	Line Blocks
	Modified ILP Formulation
	New Cache Constraints
	Cache Conflict Graph (CCG)
	Generating Constraints from CCG
	Tightening the Constraints
	Tightening the Constraints
	Inter-Procedure Calls
	Direct-Mapped  Set-Associative
	Cache State Transition Graph
	New Cache Constraints
	Data Cache Analysis
	Two-Level Analysis
	Modified Cost Functions
	Data Cache Conflict Graph
	Data Cache Conflict Graph
	New Constraints
	An Evaluation of the Above Analysis
	Timing Anomaly
	Timing Anomaly
	Domino Effect
	Possible Solutions
	Contents
	A Review of Problems of Static Analysis
	Measurement-Based Methods�– The Big Picture
	Tool Architecture
	Issues in Measurement-Based Methods
	How to Measure?
	Hardware Instrumentation
	Execution Time Measurement Framework
	Instrumentation Methods
	The Steps of Measurement-Based Analysis
	Program Partitioning
	Program Partitioning
	Test Data Generation
	Test Data Generation
	Test Data Generation
	Probabilistic WCET Analysis
	Probabilistic WCET Analysis
	Probabilistic WCET Analysis
	The pWCET Analysis Tool
	RapiTime Exemplary Results Report
	A Survey of WCET Tools
	A Survey of WCET Tools
	Contents
	Introduction of This Research Topic
	WCET Analysis of RTEMS
	WCET Analysis of RTEMS
	WCET Analysis of RTEMS
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Combined Schedulability & WCET Analysis
	Combined Schedulability & WCET Analysis
	Combined Schedulability & WCET Analysis
	Combined Schedulability & WCET Analysis
	Combined Schedulability & WCET Analysis
	A Summary of Research Practices in WCET Analysis of RTOS
	A Summarization of Problems
	Challenges on WCET Analysis of RTOS
	Challenges on WCET Analysis of RTOS
	Challenges on WCET Analysis of RTOS
	Challenges on WCET Analysis of RTOS
	Cache Partitioning and Locking
	Contents
	Trends in Hardware
	Trends in Software
	Trends in Analysis Techniques
	Contents
	Recommended Readings
	Recommended Readings
	Recommended Readings
	Recommended Readings
	Visit Our Website 

