
Chapter 2
Worst-Case Execution Time Analysis

Real-Time Embedded Systems Laboratory
Northeastern University

Spring 2009 - Real-Time Systems
http://www.neu-rtes.org/courses/spring2009/

Presenter
Presentation Notes
http://www.neu-rtes.org/courses/spring2009/

http://www.neu-rtes.org/�
http://www.neu.edu.cn/�
http://www.neu-rtes.org/courses/spring2009/�

Objectives
 In this chapter, you are supposed to learn:
 What is WCET, and why WCET
 How to obtain the WCET of a program
 Static analysis methods and measurement-based methods
 Practices on WCET analysis of RTOS
 New challenges and future trends on WCET analysis

2009/3/92 Chapter 2: WCET Analysis

Contents

2009/3/9Chapter 2: WCET Analysis3

 An Introduction to WCET Analysis
 Static Analysis
 Measurement-Based Methods
 WCET Analysis of RTOS
 New Challenges and Future Trends
 Recommended Readings

An Example of Distributed RTS

2009/3/9Chapter 2: WCET Analysis4

The Need for Timing Validation

2009/3/9Chapter 2: WCET Analysis5

 An Example in Car Industry
 Today, a new car typically contains 80 ECUs
 The car electronic systems are provided by multiple OEMs
 The challenge of integration
 Increasingly complex processors are used

 Related reports show that

Other
Electronic
Problems

25%

Timing
Problems

30%

Other
Problems

45%

Breakdown Reasons

A Simplest Form of Exe. Time Variation

2009/3/9Chapter 2: WCET Analysis6

Void signal_processing (){
curr_signal = read_signal();
if (curr_signal < threshold){

signal_transformation(); // some +-*/ ops.
}
else{

error_handling_routine();
// complex error handling operations

}
}

In this signal processing task, the real operations performed depends
on the inputted signals. Different signals lead to different operations,
then different execution time.

Almost all real-life programs have variable execution time.

What is WCET?

2009/3/9Chapter 2: WCET Analysis7

Worst-case execution time of a task is NOT response time of a
task, the latter contains not only execution time, but also the
durations of preemptions and blockings.

Why WCET Analysis?

2009/3/9Chapter 2: WCET Analysis8

 Hard real-time systems must
satisfy stringent timing
constraints; whether the
constraints are satisfied or not
should be analyzed at design
time

 Real-time schedulability test
requires WCET of each task,
and an incorrect result leads to
timing failure

 On the right is an example of
the result led by incorrectly
estimated WCET

0 1 2 3 4

T1=(1, 4)

T2=(1, 4)

T3=(2, 4)

Task Set
Schedulable

0 1 2 3 4

Deadline
Missed!

WCET Analysis Quality

2009/3/9Chapter 2: WCET Analysis9

 Safety:
 The estimated upper bound should always enclose the actual

WCET

 Tightness:
 The estimated upper bound should be as close as possible to

the actual WCET

 Complexity:
 There is a trade-off between accuracy and analysis complexity
 Analyzers should balance it according to practical requirements

 The trade-off between analysis complexity and the quality
of results

Why Not Just Measure WCET?

2009/3/9Chapter 2: WCET Analysis10

Start Timing Measurement

Execute Tasks on Target HW

Stop Timing Measurement

TimerLogic Analyzer...

WCET Estimation?

Why Not Just Measure WCET?

2009/3/9Chapter 2: WCET Analysis11

 Why NOT?
 It is intractable to cover all execution traces of a program

(Think of a program with 10,000 loop iterations and an if-then-
else as the loop body, 210,000 traces)

 Hard to guarantee worst-case data input
 hard to simulate worst-case processor state
 Need real hardware

 BUT
 Measurement-based methods are easy to implement
 Can get a rough estimation of the execution time
 Compliment with other analysis techniques to make the results

trustworthy

Static Analysis Techniques

2009/3/9Chapter 2: WCET Analysis12

 How it works?
 Given a program executable and the hardware the program is

running, use mathematical methods to calculate the safe upper
bound without any simulation

 Pros
 Math theorems guarantee safety
 So mandatory in safe-critical hard real-time systems

 Cons
 Need to build complex mathematical models
 Long analysis time for complex programs

The Ingredients of WCET Analysis

2009/3/9Chapter 2: WCET Analysis13

 Flow Facts
 Flow facts give us information on the control flow of the

programs, such as infeasible paths and loop counts, etc.
 Automatic flow facts extraction and manual annotation
 How to annotate flow facts in the program

The Ingredients of WCET Analysis

2009/3/9Chapter 2: WCET Analysis14

 The Representation Levels of Programs
Matlab/Simulink – Component-based Design

C/C++/Java – High-Level Language Assembly or Machine Code
Int filtez(int *bpl, int *dlt)
{

int i;
long int zl;
zl = (long)(*bpl++)*(*dlt++);
for (i = 1; i < 6; i++)

zl+=(long)(*bpl++)*(*dlt++);
return ((int) (zl >> 14)); /* x2 here */

}

STMFD SP!, {LR}
STMFD SP!, {LR}
STMFD SP!, {R0-R12} ; Push registers
MRS R4, CPSR ; Push current CPSR
TST LR, #1 ; called from Thumb mode?
ORRNE R4, R4, #0x20 ; If yes, Set the T-bit
STMFD SP!, {R4}

Simple Single-
Core Processors

Complex Processors with
Pipeline and Cache

Multi-core
Processors

The Ingredients of WCET Analysis

2009/3/9Chapter 2: WCET Analysis15

 The Target Hardware

Hardware is becoming
more and more
complex, hard to
analyze!

Remarks on the Ingredients

2009/3/9Chapter 2: WCET Analysis16

 The Representation Levels of Programs
 Precise timing analysis has to be done after all program

transformations
 Generally, it is much easier to extract or annotate flow facts in a

higher representation level
 The flow facts should be mapped from higher level to lower level

correctly, probably this mapping is done in parallel to code
transformation

 Hardware in real-time systems are becoming more and
more complex with features to improve average-case
performance (throughput), but less predictable, e.g. timing
anomaly

Contents

2009/3/9Chapter 2: WCET Analysis17

 An Introduction to WCET Analysis
 Static Analysis
 Path Analysis
 Micro-Architecture Analysis

 Measurement-Based Methods
 WCET Analysis of RTOS
 New Challenges and Future Trends
 Recommended Readings

A Generic Workflow of Static Analysis

2009/3/9Chapter 2: WCET Analysis18

1 Compile source code into the binary of
target hardware

2 Reconstruct the Control-Flow Graph
from the binary

3 Model the HW architecture, calculate
the execution time of each basic block
in the CFG

4 Calculate the WCET using some DSE
tools, e.g. ILP solvers, constraint solvers,
model checkers

Figure from Chronos@NUS

An Example of the Workflow

2009/3/9Chapter 2: WCET Analysis19

Do micro-arch modeling to get
the execution time of each BB

Estimated WCET value

What is Path Analysis?

2009/3/9Chapter 2: WCET Analysis20

 Path Analysis
 To identify the execution trace that leads to the longest

execution time
 To identify infeasible paths of the program
 Path analysis is a “Design Space Exploration” problem

 Popular Techniques
 Tree-based methods (Timing Schema)
 Path-based methods
 Implicit Path Enumeration Technique (IPET)

Timing Schema

2009/3/9Chapter 2: WCET Analysis21

 Represent the program in a syntax tree
 Calculate the WCET of a program by folding the tree

Timing Schema

2009/3/9Chapter 2: WCET Analysis22

 Some General Assumptions
 No recursion
 Explicit function calls
 No “goto”s
 Bounded loop with single entry and single exit

 The Rules

An Example

2009/3/9Chapter 2: WCET Analysis23

An Example (2)

2009/3/9Chapter 2: WCET Analysis24

The Workflow of Timing Schema

2009/3/9Chapter 2: WCET Analysis25

 Decomposition
 Decompose a statement into its primitive components (atomic

blocks)

 Code Prediction
 Predict the implementation (compiled instructions) of each

atomic block

 Execution Time of the Atomic Blocks
 Calculate the execution times of the atomic blocks according

to the execution times of the instructions

 Execution Time of the Statements
 Calculate the execution times of the statements according to

the execution times of the atomic blocks

An Evaluation of Timing Schema

2009/3/9Chapter 2: WCET Analysis26

 Pros
 Simple method with cheap computation effort
 Scale very well with program size

 Cons
 Cannot deal with generic flexible program structures
 Limited ability on specifying flow facts
 Suffers compiler optimization

Path-Based Methods

2009/3/9Chapter 2: WCET Analysis27

 The upper bound is deter-
mined by: first calculating
the bounds of all paths, and
then searching the path
with longest execution time

 Possible paths are
represented explicitly

Model Checking

2009/3/9Chapter 2: WCET Analysis28

 Model Checking of WCET is Path Based
 The state space is all the possible program paths
 The model checkers deal with paths explicitly

 Basic Idea
 Construct the CFG of a program as input
 Transform the CFG into the MC model
 Search the path with the longest execution time

CFG Reconstruction – An Example

2009/3/9Chapter 2: WCET Analysis29

Loop entry

Loop Head

Loop Exit

Loop Tail

CFG Model Checking Model

2009/3/9Chapter 2: WCET Analysis30

The model checker runs an FSM, where each box represents a state in the FSM, and
the arcs represent the transitions. Labels on arcs specify the transition conditions.

The Optimization Procedure

2009/3/9Chapter 2: WCET Analysis31

 We can ask the model checker “is it YES or NO that ‘for all
execution paths starting from the initial state, globally WCET is
not greater than N“.

 Additional procedures are needed to find the actual value of N

For example,
If the actual WCET is 100, then
TRUE, for N= 100
FALSE, for N= 99

Evaluation of the Path-Based Methods

2009/3/9Chapter 2: WCET Analysis32

 Pros
 Allows simple integration of HW modeling in the analysis

(expressiveness)
 Guaranteed exact results

 Cons
 Scalability problems (exponential state space)
 If you use model checkers, some unknown performance

bottlenecks may occur

Implicit Path Enumeration Technique

2009/3/9Chapter 2: WCET Analysis33

 Can obtain exact answer without exhaustive search of all
the paths

 Hint: the objective is to determine the worst-case
execution time, not the worst-case execution path

 Idea: finding the worst-case execution time finding the
worst-case execution count of each basic block

Implicit Path Enumeration Technique

2009/3/9Chapter 2: WCET Analysis34

 Solutions
 The problem of finding the worst-case execution counts can be

formulated as an Integer Linear Programming (ILP) problem or
a constraint programming problem

 The more constraints, the more accurate results

Implicit Path Enumeration Technique

2009/3/9Chapter 2: WCET Analysis35

 Constraints – Restrictions on x-variables
 Structural constraints: extracted directly from the CFG

Implicit Path Enumeration Technique

2009/3/9Chapter 2: WCET Analysis36

 Constraints – Restrictions on x-variables
 Functional constraints: telling how the program works, e.g.

how many times a loop iterates

An Example of ILP Formulation

2009/3/9Chapter 2: WCET Analysis37

BB0

BB1

BB2 BB3

BB7

BB4 BB5

BB6

5

Sta

11

1 3

5

7 5

7 8

4

An Evaluation of IPET

2009/3/9Chapter 2: WCET Analysis38

 Pros
 Allows to consider complex flow facts
 Generation of constraints is simple and direct
 Efficient tools

 Cons
 Solving ILP is generally NP-hard (luckily, the WCET problem

can be reduced to network flow problem, which requires less
solving time)

 Still difficult to encode the flow facts that specify execution
ordering

Contents

2009/3/9Chapter 2: WCET Analysis39

 An Introduction to WCET Analysis
 Static Analysis
 Path Analysis
 Micro-Architecture Analysis

 Measurement-Based Methods
 WCET Analysis of RTOS
 New Challenges and Future Trends
 Recommended Readings

Micro-Architecture Analysis

2009/3/9Chapter 2: WCET Analysis40

 Why Micro-Architecture Analysis?
 The execution time depends not only on the program itself,

but also on the hardware where the program executes
 Modern processors have lots of complex features that can

result in unpredictable execution time variation, which is very
hard to analyze

 Timing Anomaly

 What Are Included in Micro-Architecture Analysis?
 Cache analysis
 Pipeline analysis (multiple issue, out-of-order pipelines)
 Branch prediction and speculative execution
 ……

Cache in a Nutshell

2009/3/9Chapter 2: WCET Analysis41

 Why Cache?
 The “memory wall”

Cache in a Nutshell

2009/3/9Chapter 2: WCET Analysis42

 Why Cache?
 Cost-speed trade-off
 Program temporal/spatial locality
 Memory hierarchy

Cache in a Nutshell

2009/3/9Chapter 2: WCET Analysis43

 Types of Caches
 L1 Instruction Cache (32KB)
 L1 Data Cache (32KB)
 L2/L3 Unified Cache (512KB ~ 6MB)
 Shared cache in multicores

 Associativity
 Cache are organized in terms of “cache lines”
 Associativity specifies how the cache lines are organized and

how to map a memory block into the cache
 Direct-mapped
 Full-associative
 Set-associative

Cache in a Nutshell

2009/3/9Chapter 2: WCET Analysis44

 Direct-mapped Cache

i = x % n;

Easy to implement

Fast scan

But high miss ratio!

Cache in a Nutshell

2009/3/9Chapter 2: WCET Analysis45

 Full-associative Cache

A memory block can be mapped
to any cache line if not occupied

Efficient use of the cache

But notorious scan and
replacement overhead!

Cache in a Nutshell

2009/3/9Chapter 2: WCET Analysis46

 Set-associative Cache

i = (x % #sets) + A (0≤A≤set size)

A clever trade-off between direct-mapped
caches and full-associative caches

Much less overhead than FA, but still harder to
analyze than DM

Good news to GP-architecture guys, but not so
good to Real-Time guys

Cache in a Nutshell

2009/3/9Chapter 2: WCET Analysis47

 Replacement Policy
 If cache miss occurs, kick out which cache line?
 Round-robin, LRU, pseudo-LRU
 Different cache replace policies have different predictability

 Write Policy
 Write-through: whenever there is a write to the cache content,

the data is immediately written to the corresponding main
memory address, regardless of hits or misses

 Write-back: only write dirty cache data to main memory when
the cache block is replaced, requires special bits in cache to tag
dirty data

Cache Analysis in WCET Analysis

2009/3/9Chapter 2: WCET Analysis48

 Without cache analysis
 In each BB, all memory accesses take fixed cycles, no variation
 The execution time of a BB is not affected by the execution

history
 When there is cache, all the situations are different

 Analysis of different types of caches
 I-cache with different replacement policy
 I-cache or D-cache?
 Single-level or multi-level?
 Dedicated cache or shared cache?

Cache Analysis in the IPET Framework

2009/3/9Chapter 2: WCET Analysis49

 Idea
 Model new constraints related to cache behavior into the

original ILP problem
 No fundamental changes to the structure of the ILP problem

 How to?
 For each instruction, determine

 Cache hit execution counts, time
 Cache miss execution counts, time
 go into the basic blocks

Line Blocks

2009/3/9Chapter 2: WCET Analysis50

 The objective cache analysis is to determine how many
misses and hits in each BB analyze conflicting memory
blocks

Modified ILP Formulation

2009/3/9Chapter 2: WCET Analysis51

New Cache Constraints

2009/3/9Chapter 2: WCET Analysis52

Cache Conflict Graph (CCG)

2009/3/9Chapter 2: WCET Analysis53

Generating Constraints from CCG

2009/3/9Chapter 2: WCET Analysis54

Tightening the Constraints

2009/3/9Chapter 2: WCET Analysis55

 Assumptions for the Example
 Each BB is mapped to a single cache line
 BB1 conflicts with BB6, BB4 conflicts with BB5

p(4.1, 5.1) = 0

Tightening the Constraints

2009/3/9Chapter 2: WCET Analysis56

x3 = 10·x1

x7 = 10·x5

x4 = 9·x1

We already know:

But this needs to be tightened:

Inter-Procedure Calls

2009/3/9Chapter 2: WCET Analysis57

 d1 = 1, x1 = d1 = f1, x2 = f1 = f2, d2.f1 = f1
 x3.f1 = d2.f1 = d3.f1, d2.f2 = f2
 x3.f2 = d2.f2 = d3.f2, x3 = x3.f1 + x3.f2
 Xhit3.1 = p(3.1.f1, 3.1.f2)

Direct-Mapped Set-Associative

2009/3/9Chapter 2: WCET Analysis58

 What’s the Difference?
 Since conflicting domains are set-associative sets, there are

more potential conflicts to be analyzed
 Cache replacement policy affects analysis

 What to do?
 We need to maintain cache states

 CCG CSTG (a more concrete form of CCG)
 Cost function is unchanged, but cache constraints are different

now

∑= −
n

i im
m

0)!(
!

Cache State Transition Graph

2009/3/9Chapter 2: WCET Analysis59

New Cache Constraints

2009/3/9Chapter 2: WCET Analysis60

1 The execution count of Bm,n = the sum of inflow with Bm,n in the right most line entry

2 For each node, sum of inflow = sum of outflow

3 Starting condition

4 Cache hit lower bound:

Data Cache Analysis

2009/3/9Chapter 2: WCET Analysis61

 Two sub-problems
 Determine load/store addresses
 Model worst case data cache hit/miss counts

 Difficulties
 L/S addresses may be ambiguous or may change, usually

dynamic data structures are banned for static analysis
 Data flow analysis is required

 Solutions
 Extend cost functions to include data cache miss penalties
 Use linear constraints to solve address ambiguity problems

Two-Level Analysis

2009/3/9Chapter 2: WCET Analysis62

 Data flow analysis
 To determine the absolute data addresses of LD/ST

instructions
 Very difficult, but algorithms already established

 Data cache conflict analysis
 Given the results of data flow analysis, construct a data cache

conflict graph, and use ILP techniques to bound the data cache
hit and miss counts

 Cinderella works on the second sub-problem

Modified Cost Functions

2009/3/9Chapter 2: WCET Analysis63

Data Cache Conflict Graph

2009/3/9Chapter 2: WCET Analysis64

 Idea
 By data flow analysis, we can identify a set of possible data

addresses accessed by LD/ST instr.

 Different LD/ST instructions that access the addresses in the
same data cache set may leads to data cache miss

 Similar to I-cache analysis, use data cache conflict graph to
capture the control flow of LD/ST instructions to analyze
potential data hits and misses

Data Cache Conflict Graph

2009/3/9Chapter 2: WCET Analysis65

Assume data cache is direct-mapped, and each cache
line has 4 bytes

Data address rage [0x100, 0x124] span 10 data cache
lines

Take the set at 0x100 for example, see the graph on the
left

New Constraints

2009/3/9Chapter 2: WCET Analysis66

 In D-CCG, sum of inflow = sum of outflow

 The bounds on the execution counts of each LD/ST
instruction instance

 Hit and miss relation
 LD-incurred cache miss is similar to instruction cache
 ST-incurred cache miss depends on write policies: write

through or write back, with/without write allocate

An Evaluation of the Above Analysis

2009/3/9Chapter 2: WCET Analysis67

 Pros
 An elegant way to integrate hardware modeling into WCET

calculation

 Cons
 The number of ILP constraints grows greatly, because the CCG

is a fine-grained representation of cache states
 So the time to solve the ILP problem may be very long, not

feasible for real-life programs

 Solutions
 Try some other methods that can do cache analysis in a more

coarse-grained way by sacrificing some precision

Timing Anomaly

2009/3/9Chapter 2: WCET Analysis68

 Counterintuitive Behaviors

Timing Anomaly

2009/3/9Chapter 2: WCET Analysis69

 A Formal Definition
 ∆t – Latency variations of several instructions S’ (the whole

instruction sequence is S)
 ∆C – execution time change of the whole instruction sequence

 As long as one of the following conditions hold, we say
that a timing anomaly occurs
 ∆t > 0 ∆C < 0
 ∆t < 0 ∆C > 0
 ∆t > 0 ∆C > ∆t
 ∆t < 0 ∆C < ∆t

Domino Effect

2009/3/9Chapter 2: WCET Analysis70

Possible Solutions

2009/3/9Chapter 2: WCET Analysis71

 Occurrence of timing anomalies depends on both
hardware features and code structure

 How to eliminate timing anomalies?
 De-active caches
 Use synchronization points
 Choose more predictable hardware platform
 Code reordering

Contents

2009/3/9Chapter 2: WCET Analysis72

 An Introduction to WCET Analysis
 Static Analysis
 Measurement-Based Methods
 WCET Analysis of RTOS
 New Challenges and Future Trends
 Recommended Readings

A Review of Problems of Static Analysis

2009/3/9Chapter 2: WCET Analysis73

 Problems of Static Analysis
 Computation efforts exerted to cover all possible situations

possible scalability problems
 Hard to conduct micro-architecture models
 Micro-arch analysis of complex hardware may encounter

scalability problems

 So Measurement-Based Methods
 What can we benefit from it?
 How to do measurement-based analysis?
 What are the technical issues?

Measurement-Based Methods
– The Big Picture

2009/3/9Chapter 2: WCET Analysis74

Tool Architecture

2009/3/9Chapter 2: WCET Analysis75

Issues in Measurement-Based Methods

2009/3/9Chapter 2: WCET Analysis76

 How to measure?
 Measurement tools: HW, SW
 End-to-end, or just measure code segments?

 How to cover more execution traces?
 Due to worst-case input
 Due to worst-case hardware states
 Path/Trace coverage

 What do the results reveal?
 Single WCET value, or a ET distribution?
 This issue equals “what’s the use of measurement-based

methods?”

How to Measure?

2009/3/9Chapter 2: WCET Analysis77

 End-to-end or measuring code segments?
 End-to-end is easy, but inaccurate, intractable
 Measurement of code segments + Calculation

 How to Measure?
 Software instrumentation

 Put time recording in the analyzed codes
 Accuracy?

 Hardware instrumentation
 Logic Analyzers, oscilloscopes, …

Hardware Instrumentation

2009/3/9Chapter 2: WCET Analysis78

Execution Time Measurement Framework

2009/3/9Chapter 2: WCET Analysis79

Instrumentation Methods

2009/3/9Chapter 2: WCET Analysis80

 Requirements
 Instrumentations (IPs) may not alter program flow or

execution time in an unknown or unpredictable way. IPs have
to be persistent if changing either.

 Execution always starts with the same (known) state (cache,
pipeline, branch prediction, ...)

 Design Decisions
 Control flow manipulation? Input data generation?
 Number of measurement runs?
 Resource consumption?
 Required devices?
 Installation effort?

The Steps of Measurement-Based Analysis

2009/3/9Chapter 2: WCET Analysis81

1. Static analysis: reconstruct CFG from the code
2. Program partitioning
3. Test data generation
4. Execution time instrumentation
5. WCET calculation

 This is only one exemplary workflow, other measurement-
based methods may have different workflow

Program Partitioning

2009/3/9Chapter 2: WCET Analysis82

 What is a program segment?
 Roughly a sub-graph of the CFG

 Why program partitioning?
 Reduce problem state space reduce

analysis efforts
 Precision is sacrificed

 Partitioning granularity
 Fewer segments less instrumentation

efforts but higher analysis computation
overhead

 “Good” partitioning
 Balance “the # of program segments” and

“the average # of paths per segment”

Program Partitioning

2009/3/9Chapter 2: WCET Analysis83

 An Example of Program Partitioning

Test Data Generation

2009/3/9Chapter 2: WCET Analysis84

 What is the so-called “test data”?
 Roughly, the values of a set of variables that leads to one of the

paths of a program segment

 What is the use of “test data”?
 Put code instrumentations at the segment boundaries, and set

the test data to some specific values, which can leads the
program to the desired path

 How to obtain “test data”? – model checking

Test Data Generation

2009/3/9Chapter 2: WCET Analysis85

Test Data Generation

2009/3/9Chapter 2: WCET Analysis86

 Execution Time Measurement
 Use software instrumentation to guide the program
 Use hardware instrumentation to measure execution time

 Enforcing Predictable Hardware States
 Challenge: on complex hardware where the instruction

timing depends on the execution history
 Code instrumentations can be used to enforce an a-priori

known state at the beginning of a program segment, thus
avoiding the need for considering the execution history

 WCET Calculation
 Use ILP, Model Checking, or any optimization tools to do

longest path search

Probabilistic WCET Analysis

2009/3/9Chapter 2: WCET Analysis87

 What is probabilistic WCET analysis?
 It gives you a distribution of the execution time of a program,

instead of single WCET value

 Why probabilistic WCET analysis?
 To determine the probability distribution of the execution

times of tasks, then used to do probabilistic schedulability
analysis in soft real-time systems

 Helping to detect the “WCET hotspot”, used for WCET
reduction

 Helping to analyze the execution behaviors of a program

Probabilistic WCET Analysis

2009/3/9Chapter 2: WCET Analysis88

 Solution: Probabilistic Timing Schema
 Timing Schema

 W(A) = exec time A
 W(A;B) = W(A)+W(B)
 W(if E then A else B) = W(E) + max(W(A), W(B))

 Probabilistic Timing Schema
 Sequential execution: Z = X + Y
 Distribution functions: F(x) = P[X ≤ x], G(y) = P[Y ≤ y]
 To compute H(z) = P[X + Y ≤ z]
 If X and Y are independent
 If joint distribution between X and Y is given as J(x, y)
 If the joint distribution is unknown

Probabilistic WCET Analysis

2009/3/9Chapter 2: WCET Analysis89

 Probabilistic Timing Schema
 Conditional execution: Z = max(X, Y)
 Z = E + max(X, Y), max(X, Y) has the distribution H(z)

 Iteration: can be analyzed as a combination of sequence execution and
conditional execution, loop bounds should be known

 Determining Probability Distributions
 To determine the actual distribution of the execution times of

individual units (basic blocks)
 Run the units under a large number of test scenarios

The pWCET Analysis Tool

2009/3/9Chapter 2: WCET Analysis90

Obtaining execution traces. This is done by manually or automatically
inserting instrumentation calls into the source code, or by automatically
adding instrumentation codes into the compiled assembly code

In this step, the CFG of the assembly code is
reconstructed, and then converted into a syntax tree

Compute the distribution functions of each node from the traces;
Determine the joint distribution function of pairs of nodes;
Loop identification, loop iteration extracted;
This step is VERY computation expensive!!

Generate a program for WCET calculation, this is based on
separating the timing analysis into a program generation part and
an execution part.
The generator traverses the tree in reversed order and applies
the timing schema rules, and the results is a set of commands on
how to compute the timing program for the given tree.

Run the generated program with the program to
be analyzed, and calculate the probabilistic
distribution of the execution times of the program.

RapiTime Exemplary Results Report

2009/3/9Chapter 2: WCET Analysis91

A Survey of WCET Tools

2009/3/9Chapter 2: WCET Analysis92

A Survey of WCET Tools

2009/3/9Chapter 2: WCET Analysis93

 Support of Architectural Features

Contents

2009/3/9Chapter 2: WCET Analysis94

 An Introduction to WCET Analysis
 Static Analysis
 Measurement-Based Methods
 WCET Analysis of RTOS
 New Challenges and Future Trends
 Recommended Readings

Introduction of This Research Topic

2009/3/9Chapter 2: WCET Analysis95

 Real-Life Real-Time Systems are Composed of
 RTOS
 Applications

 Timing Correctness of a Real-Time System is guaranteed
by
 Schedulability analysis in the high level
 WCET analysis in the low level

 Applying WCET tools for application programs to RTOS
 Poor results are reported (up to 86% pessimism)
 Hard to handle some RTOS specific programs

 Additional analysis techniques are required!

WCET Analysis of RTEMS

2009/3/9Chapter 2: WCET Analysis96

 Research Group
 Antoine Colin & Isabelle Puaut @ IRISA

 Experiment Setup
 WCET tool: Heptane (tree-based)
 RTOS: RTEMS
 Manual revision to codes
 12 out of 85 system calls, span across 91 files, 14,532 LOC

WCET Analysis of RTEMS

2009/3/9Chapter 2: WCET Analysis97

 Problem 1: unstructured control flow
 Such as goto statements, multiple loop exits, …
 Because Heptane is a tree-based WCET analysis tool
 Consequences: (1) rewriting the codes; (2) only a small subset

of RTEMS system calls are analyzed

 Problem 2: Dynamic function calls implemented through
function pointers
 Real called functions are determined at runtime
 Solutions: replace them with static ones

WCET Analysis of RTEMS

2009/3/9Chapter 2: WCET Analysis98

 Problem 3: Hard to determine loop bounds since the
loop bounds are related to dynamic runtime behaviors
 Task queue, message queue manipulation
 Solution: Manually bound loops by an investigation of RTOS

codes

 Problem 4: Blocking system calls
 Problem 5: Context switch overhead

 Putting them all together, an average of 86% pessimism in
the estimated results is reported

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis99

 Challenges to WCET Analysis – Side Effects
 It is apparent that the state space can be reduced via

composable or hierarchical design/analysis
 Side effects are defined as task interactions that cannot be

traced back to task interface. For example, the shared cache
may enable task A to influence the execution time of task B by
displacing B’s data in the shared region.

 Side effects are a big problem to composable timing analysis

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis100

 Side Effects in Simple Hardware Architectures
 Variable program execution time due to

 Unpredictable data input
 Instructions with variable execution cycles dependent on operands

 In Complex Hardware Architectures
 Different task instances may have different execution time
 Scheduling without preemption: task instances from different

tasks may execute alternatively, creating complex hardware
states which are hard to predict

 Scheduling with preemption: HW states change at preemption
points, hard to predict when preemption will happen

 Modern complex pipelines flush not practical

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis101

 Side Effects in Multicore Processors
 Shared cache: if two tasks on two different cores share the

same cache lines, it is hard to bound the effects of mutual
replacement of cache contents

 Other shared resources have similar problems
 Simultaneous Multi-Threading (SMT): also called hyper-

threading by Intel, multiple tasks on the same core share the
function units at instruction level, hard to analyze the execution
time of each task with good precision

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis102

 Solutions
 The basic philosophy of Puschner’s solutions is to try every

possibility to AVOID unwanted interactions
 (1) The use of single-path code in all tasks
 (2) The execution of a single task/thread per core
 (3) The use of simple in-order pipelines
 (4) Statically scheduled access to shared memory in CMPs

 The solutions require redesign in both hardware and software
(at both system level and application level)

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis103

 An RTOS for a Time-Predictable Computing Node

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis104

 Requirements on Hardware Architectures
 The execution times of instructions are independent of the

operand values
 The CPU support a conditional move instruction having

invariable execution times
 Direct-mapped or set-associative caches with LRU
 Memory access times are invariable for all data items
 The CPU has a programmable instruction counter that can

generate an interrupt when a given number of instructions has
been completed

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis105

 The SW Architecture – Task Model
 Simple Task Model

 I/O operations will never block a task
 No statements for explicit I/O or synchronization within a task
 All inputs are ready at task startup
 Outputs are ready in the output variables when the task completes

 Single-path Tasks
 Transformation techniques

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis106

 Single-Path Transformation

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis107

 The SW Architecture – RTOS
 There must be no jitter in the execution times of the RTOS

routines
 Kernel designed using the single-path techniques
 Communications: messages are scheduled at fixed time off-line

1 Local buffer accessed by tasks
2 Global buffer managed by IPC
3 Inter-node communication
4 Message schedule defined off-line

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis108

 The SW Architecture – RTOS
 Scheduler

 Time-triggered
 Schedule is determined off-line
 Scheduler invoked at each global clock tick
 Mode-switch is implemented by schedule switch, also determined off-

line
 Tasks are divided into “initialization phase” and “real-time phase”, the

former is non-real-time, the latter is managed by the RTOS

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis109

 An Example

Predictable Architecture Design @ TuWein

2009/3/9Chapter 2: WCET Analysis110

 Evaluations
 Puschner has posed insights on design for predictability
 Single-path technique is too costly and rigid
 Requiring both specialized hardware and software (RTOS) may

be impractical
 In all, the ultimate predictability is achieved at the cost of

system flexibility

Combined Schedulability & WCET Analysis

2009/3/9Chapter 2: WCET Analysis111

 Schneider studied combined schedulability & WCET
analysis in his Ph.D. thesis, issues discussed in his work
include
 The quality of WCET analysis of RTOS can be improved by

considering both the applications and the RTOS
 In real-life multitasking real-time systems, tasks are executed in

an interleaving manner (interruptions), but this is not
considered in traditional WCET analysis, under such a
circumstance, both scheduling and WCET must be re-think

Combined Schedulability & WCET Analysis

2009/3/9Chapter 2: WCET Analysis112

 Why Combined Schedulability & WCET Analysis?
 Traditional schedulability and WCET analysis are performed in

a hierarchical manner where the WCETs of the tasks are
calculated first, then the results are fed to schedulability
analysis

 It is implied that even a task is interrupted, the WCET of all its
segments equals the WCET of the task without interruptions

 In multi-tasking systems running on complex hardware, the
assumptions for hierarchical analysis is invalidated

Combined Schedulability & WCET Analysis

2009/3/9Chapter 2: WCET Analysis113

 Why the assumption is invalidated?
 As we have discussed in previous slides, the WCET of a

program highly depends on the processor states in presence of
complex hardware

 If a program is interrupted during execution, when it resumes,
the hardware state is not identical to that at the interruption
point, the influences are complex:
 Some needed cache contents are swapped out, so the WCET in

presence of interruption is larger than that without interruption
 If timing anomaly occurs, the displacement of cache contents may

leads to a smaller WCET

Combined Schedulability & WCET Analysis

2009/3/9Chapter 2: WCET Analysis114

 How to deal with these problems?
 Consider the scheduling behavior within the WCET analysis

process, and capture the state change at the interruption
points

 Re-calculate the WCET by considering the state change
 Re-do schedulability analysis with new WCET values

Combined Schedulability & WCET Analysis

2009/3/9Chapter 2: WCET Analysis115

 The Old and New Analysis Framework

A Summary of Research Practices in WCET
Analysis of RTOS

2009/3/9Chapter 2: WCET Analysis116

A Summarization of Problems

2009/3/9Chapter 2: WCET Analysis117

 Problem 1: Irreducible program structures
 Solution: choose a proper WCET tool

 Problem 2: Lack of application information greatly affects
analyzability and the precision of the results
 Bounding loops
 Dynamic function calls and blocking system calls
 System call context and RTOS working mode
 Solution: extract helpful information from applications

 Problem 3: multi-tasking
 Solution: develop analysis techniques that can safely bound the

effects of task switching

Challenges on WCET Analysis of RTOS

2009/3/9Chapter 2: WCET Analysis118

 Does Single WCET Value Suffice?
 The running of RTOS is mode-based, so a single WCET value

regardless of execution mode is not sensible
 Related techniques, such as parametric ILP should be

developed

 Considering Both Applications and RTOS
 Application information may be very useful to RTOS analysis,

e.g. bounding loops
 What kinds of application information should be

communicated to the analyzer?
 How can these information be communicated to the analyzer?

Challenges on WCET Analysis of RTOS

2009/3/9Chapter 2: WCET Analysis119

 Combined Schedulability and WCET Analysis
 There is a mutual communication between schedulability

analysis and WCET analysis
 Control of the state space explosion

 Raising the Degree of Automation
 Almost all related research practices reported low degree of

automation in the analysis
 WCET tool designers must always keep the issue of

“automation” in mind when designing tools
 The degree of automation is the largest factor that affects the

usability of a WCET tool

Challenges on WCET Analysis of RTOS

2009/3/9Chapter 2: WCET Analysis120

 Managing Analysis Complexity in the Multicore Era
 Problem: fine-grained access to shared resources (L2 cache,

on-chip bus, …), and for most existing architectures, we have
very limited ability to control the behavior of these shared
resources

 Solution: Performance isolation techniques (cache partitioning),
since such techniques can “create” an isolated environment for
each core, and at the same time still maintains the flexibility
that shared resources provide with

Challenges on WCET Analysis of RTOS

2009/3/9Chapter 2: WCET Analysis121

 To Design or to Analyze?
 Analyze

 No need to change existing hardware or system; analysis must be
done if you’re to analyze fabricated systems

 But lots of hardware features or management policies are not
designed for real-time, these features make the analysis very hard

 To guarantee predictability on unpredictable hardware, a lot of
pessimism is introduced into the results system over design

 Design
 To design hardware or software with the consideration of real-time

from scratch can yield very predictable systems
 Predictability is achieved by sacrificing flexibility
 New hardware requires re-design of the system, from hardware, to

programming tools, to OS and applications
 A Graceful Balance!

Cache Partitioning and Locking

2009/3/9Chapter 2: WCET Analysis122

Partitioning is used to avoid inter-task interference regardless of single- or multi-core.
Locking is used to enforce predictability in terms of cache hits/misses

Contents

2009/3/9Chapter 2: WCET Analysis123

 An Introduction to WCET Analysis
 Path Analysis
 Micro-architecture Analysis
 A Survey of Academic and Industrial WCET Tools
 WCET Analysis of RTOS
 New Challenges and Future Trends
 Recommended Readings

Trends in Hardware

2009/3/9Chapter 2: WCET Analysis124

 More software control
 Software-controlled cache locking
 Scratchpad memory
 More predictable caches or pipelines

 Multi-core processors
 + multiple simple cores
 - Shared cache inter-task interference
 - Share whatever, on-chip buses or networks

 Execution Behavior
 Traditionally, researchers assume single task execute on single

core, but this is not necessarily the whole story
 A big gap between WCET and ACET

Trends in Software

2009/3/9Chapter 2: WCET Analysis125

 Levels of Abstraction
 Traditionally C code or assembly code
 A trend towards higher-level abstraction, e.g. OO languages,

model-based design
 More dynamic control structure, hard to reconstruct CFG
 more dynamic data structure, memory access
 Java VM, JIT compilation

 Component-based design
 FSM synthesize highly unstructured code
 Parameterized execution time/WCET

Trends in Analysis Techniques

2009/3/9Chapter 2: WCET Analysis126

 WCET-aware Compilation
 Try to tackle the analysis complexity problem in compilers
 Develop compilers that can generate predictable codes

 Raise Automation Level
 Automatic extraction of flow facts, less user intervention
 Flow facts mapping across different representation levels

 Parametric WCET Analysis
 Obtain a function for WCET results, instead of a single WCET

value

 Integrate WCET analysis with power-aware techniques
 Integrate WCET analysis with scheduling analysis

Contents

2009/3/9Chapter 2: WCET Analysis127

 An Introduction to WCET Analysis
 Path Analysis
 Micro-architecture Analysis
 A Survey of Academic and Industrial WCET Tools
 WCET Analysis of RTOS
 New Challenges and Future Trends
 Recommended Readings

Recommended Readings

2009/3/9Chapter 2: WCET Analysis128

 Books
 Flemming Nielson, et al, Principles of Program Analysis, Springer, 2004.

 John L. Hennessy and David A. Patterson, Computer Architecture, A Quantitative Approach, 4th edition,
Elsevier, 2006.

 Mostafa Abd-El-Barr and Hesham El-Rewini, Fundamentals of Computer Organization and Architecture, John
Wiley & Sons, 2005.

 Related Course Pages
 http://ti.tuwien.ac.at/rts/teaching/courses/wcet-ss08

 Referenced Papers
 Surveys and Overview Papers
 R. Wilhelm, et al. The worst-case execution-time problem—overview of methods and survey of tools. Trans. on

Embedded Computing Sys., 7(3):1–53, 2008.

 Mingsong Lv, Nan Guan, Yi Zhang, Qingxu Deng, GeYu, Static Timing Analysis of Real-Time Opearting Systems –
Survey of Research and New Challenges, NEU-RTES lab report, 2008.

 Bjorn Lisper. Trends in Timing Analysis. 2006.

 C. Ferdinand and R. Heckmann. Worst-case execution time - a tool provider’s perspective. In ISORC 2008.

 Raimund Kirner, Peter Puschner. Classification of WCET Analysis Techniques. In ISORC 2005.

 Rainmund Kirner, Peter Pushner. Obstacles in Worst-Case Execution Time Analysis. In ISORC 2008.

Recommended Readings

2009/3/9Chapter 2: WCET Analysis129

 J. Gustafsson. Usability aspects of wcet analysis. In ISORC 2008.

 J. Gustafsson and A. Ermedahl. Experiences from applying wcet analysis in industrial settings. In ISORC 2007.

 Jan Gustafsson, et al. ALL-TIMES – a European Project on Integrating Timing Technology. 2008.

 Static Analysis
 Xianfeng Li, et al. Chronos: A Timing Analyzer for Embedded Software. 2006.

 Yau-Tsun Steven Li, et al. Cinderella: A Retargetable Environment for Performance Analysis of Real-Time Software.
In EuroPar 1997.

 Yau-Tsun Steven Li, et al. Performance Analysis of Embedded Software Using Implicit Path Enumeration. In DAC
1995.

 Yau-Tsun Steven Li, et al. Performance Estimation of Embedded Software with Instruction Cache Modeling. 1999.

 Yau-Tsun Steven Li, et al. Cache Modeling for Real-Time Software: Beyond Directed-Mapped Instruction Caches.
1996.

 Mingsong Lv, et al. Performance Comparison of Techniques on Static Path Analysis of WCET. In EUC 2008.

 T. Lundqvist and P. Stenstrom. Timing Anomalies in Dynamically Scheduled Microprocessors. In RTSS 1999.

 J. Reineke, et al. A Definition and Classification of Timing Anomalies. In WCET 2006.

 Measurement-Based Analysis
 Ingomar Wenzel, et al. Measurement-Based Timing Analysis. 2008.

Recommended Readings

2009/3/9Chapter 2: WCET Analysis130

 Ingomar Wenzel. Measurement-Based Timing Analysis of Superscalar Processors. Ph.D. thesis, 2006.

 Guillem Bernat, et al. pWCET: a Tool for PrebabilisticWorst-Case Execution Time Analysis of Real-Time Systems.
2003.

 Guillem Bernat, et al. WCET Analysis of Probabilistic Hard Real-Time Systems. In RTSS 2002.

 WCET Analysis of RTOS
 M. Carlsson, J. Engblom, A. Ermedahl, J. Lindblad, and B. Lisper. Worst-case execution time analysis of disable

interrupt regions in a commercial real-time operating system. 2002.

 D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper. Static timing analysis of real-time operating system code. In
1st International Symposium on Leveraging Applications of Formal Methods, 2004.

 A. Colin and I. Puaut. Worst-case execution time analysis of the rtems real-time operating system. 13th Euromicro
Conference on Real-Time Systems, 2001.

 G. Khyo, P. Puschner, and M. Delvai. An operating system for a time-predictable computing node. The 6th IFIP
Workshop on Software Technologies for Future Embedded and Ubiquitous Systems, pages 150–161, 2008.

 P. Puschner and M. Schoeberl. On composable system timing, task timing, and wcet analysis. In WCET 2008.

 P. Puschner. Transforming execution-time boundable code into temporally predictable code. In 17th World
Computer Congress - Stream on Distributed and Parallel Embedded Systems, 2002.

 J. Schneider. Combined schedulability and wcet analysis for real-time operating systems. Ph.D. thesis of Saarland
University, Germany, 2002.

Recommended Readings

2009/3/9Chapter 2: WCET Analysis131

 J. Schneider. Why you can’t analyze rtoss without considering applications and vice versa. 2nd International
Workshop on Worst-Case Execution Time Analysis, 2002.

 M. Singal and S. M. Petters. Issues in analysing l4 for its wcet. Proceedings of the 1st International Workshop on
Microkernels for Embedded Systems, 2007.

 Vivy Suhendra, Tulika Mitra. Exploring Locking & Partitioning for Predictable Shared Caches on Multi-cores.
In DAC 2008.

 Tools & Projects
 ALL-Times: http://www.mrtc.mdh.se/projects/all-times/

 aiT: www.ait.com

 Bound-T: www.tidorum.fi/bound-t/

 RapiTime: www.rapitasystems.com

 SymTA/P:

 Heptane: http://www.irisa.fr/aces/work/heptane-demo/heptane.html

 Vienna: http://www.wcet.at/

 SWEET: http://www.mrtc.mdh.se/projects/wcet/

 OTAWA: http://www.otawa.fr/

 Chalmers: http://www.ce.chalmers.se/research/group/hpcag/project/wcet.html

 Chronos: http://www.comp.nus.edu.sg/~rpembed/chronos/

http://www.mrtc.mdh.se/projects/all-times/�
http://www.ait.com/�
http://www.tidorum.fi/bound-t/�
http://www.rapitasystems.com/�
http://www.irisa.fr/aces/work/heptane-demo/heptane.html�
http://www.wcet.at/�
http://www.mrtc.mdh.se/projects/wcet/�
http://www.otawa.fr/�
http://www.ce.chalmers.se/research/group/hpcag/project/wcet.html�
http://www.comp.nus.edu.sg/~rpembed/chronos/�

Visit Our Website

2009/3/9Chapter 2: WCET Analysis132

 The Website of Real-Time Embedded Systems Laboratory,
Northeastern University
 http://www.neu-rtes.org
 http://www.neu-rtes.org/courses/spring2009/

 You can find
 General information on the projects conducted in our lab
 Research and publications
 Research information and contacts of the members
 Some useful research links

 Write me emails if you have questions in WCET or RTS
 mingsong@research.neu.edu.cn

http://www.neu-rtes.org/�
http://www.neu-rtes.org/courses/spring2009/�
mailto:mingsong@research.neu.edu.cn�

	Chapter 2�Worst-Case Execution Time Analysis
	Objectives
	Contents
	An Example of Distributed RTS
	The Need for Timing Validation
	A Simplest Form of Exe. Time Variation
	What is WCET?
	Why WCET Analysis?
	WCET Analysis Quality
	Why Not Just Measure WCET?
	Why Not Just Measure WCET?
	Static Analysis Techniques
	The Ingredients of WCET Analysis
	The Ingredients of WCET Analysis
	The Ingredients of WCET Analysis
	Remarks on the Ingredients
	Contents
	A Generic Workflow of Static Analysis
	An Example of the Workflow
	What is Path Analysis?
	Timing Schema
	Timing Schema
	An Example
	An Example (2)
	The Workflow of Timing Schema
	An Evaluation of Timing Schema
	Path-Based Methods
	Model Checking
	CFG Reconstruction – An Example
	CFG Model Checking Model
	The Optimization Procedure
	Evaluation of the Path-Based Methods
	Implicit Path Enumeration Technique
	Implicit Path Enumeration Technique
	Implicit Path Enumeration Technique
	Implicit Path Enumeration Technique
	An Example of ILP Formulation
	An Evaluation of IPET
	Contents
	Micro-Architecture Analysis
	Cache in a Nutshell
	Cache in a Nutshell
	Cache in a Nutshell
	Cache in a Nutshell
	Cache in a Nutshell
	Cache in a Nutshell
	Cache in a Nutshell
	Cache Analysis in WCET Analysis
	Cache Analysis in the IPET Framework
	Line Blocks
	Modified ILP Formulation
	New Cache Constraints
	Cache Conflict Graph (CCG)
	Generating Constraints from CCG
	Tightening the Constraints
	Tightening the Constraints
	Inter-Procedure Calls
	Direct-Mapped Set-Associative
	Cache State Transition Graph
	New Cache Constraints
	Data Cache Analysis
	Two-Level Analysis
	Modified Cost Functions
	Data Cache Conflict Graph
	Data Cache Conflict Graph
	New Constraints
	An Evaluation of the Above Analysis
	Timing Anomaly
	Timing Anomaly
	Domino Effect
	Possible Solutions
	Contents
	A Review of Problems of Static Analysis
	Measurement-Based Methods�– The Big Picture
	Tool Architecture
	Issues in Measurement-Based Methods
	How to Measure?
	Hardware Instrumentation
	Execution Time Measurement Framework
	Instrumentation Methods
	The Steps of Measurement-Based Analysis
	Program Partitioning
	Program Partitioning
	Test Data Generation
	Test Data Generation
	Test Data Generation
	Probabilistic WCET Analysis
	Probabilistic WCET Analysis
	Probabilistic WCET Analysis
	The pWCET Analysis Tool
	RapiTime Exemplary Results Report
	A Survey of WCET Tools
	A Survey of WCET Tools
	Contents
	Introduction of This Research Topic
	WCET Analysis of RTEMS
	WCET Analysis of RTEMS
	WCET Analysis of RTEMS
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Predictable Architecture Design @ TuWein
	Combined Schedulability & WCET Analysis
	Combined Schedulability & WCET Analysis
	Combined Schedulability & WCET Analysis
	Combined Schedulability & WCET Analysis
	Combined Schedulability & WCET Analysis
	A Summary of Research Practices in WCET Analysis of RTOS
	A Summarization of Problems
	Challenges on WCET Analysis of RTOS
	Challenges on WCET Analysis of RTOS
	Challenges on WCET Analysis of RTOS
	Challenges on WCET Analysis of RTOS
	Cache Partitioning and Locking
	Contents
	Trends in Hardware
	Trends in Software
	Trends in Analysis Techniques
	Contents
	Recommended Readings
	Recommended Readings
	Recommended Readings
	Recommended Readings
	Visit Our Website

