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Objectives

» In this chapter, you are supposed to learn:
What is WCET, and why WCET
How to obtain the WCET of a program

Static analysis methods and measurement-based methods
Practices on WCET analysis of RTOS

New challenges and future trends on WCET analysis
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The Need for Timing Validation

» An Example in Car Industry
Today, a new car typically contains 80 ECUs
The car electronic systems are provided by multiple OEMs
The challenge of integration

Increasingly complex processors are used

» Related reports show that

Breakdown Reasons

Other
Electronic
Problems
Other 25%
Problems o
459 Timing
Problems
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A Simplest Form of Exe. Time Variation

Void signal_processing (){
curr_signal = read_signal();
if (curr_signal < threshold){
signal_transformation(); // some +-*/ ops.

}
else{

error_handling_routine();

/I complex error handling operations
}

In this signal processing task, the real operations performed depends
on the inputted signals. Different signals lead to different operations,

then different execution time.

Almost all real-life programs have variable execution time.
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What is WCET?

2 worst-case performance
=
E{ | | | wostcaseguaranee
o
S The actual WCET
= Minimal must be found or Maximal
2 L_owerC) observed upper bounded observed C) Upper
‘= | timing\BCE - WCET) timing
3| pound execution execution bound
S time l Im time
lll lmmm.L oot al| >
0 \ <«——— measured execution times //7 time
@ble execution tlmE/ -

ing predictability

Worst-case execution time of a task is NOT response time of a
task, the latter contains not only execution time, but also the
durations of preemptions and blockings.
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Why WCET Analysis?

» Hard real-time systems must A

satisfy s.trlngent timing e ) Task Set
constraints; whether the ! Schedulable
constraints are satisfied or not T2=(1, 4)

should be analyzed at design - REeR
time >

. . 0o 1 2 3 4
» Real-time schedulability test

requires WCET of each task,
and an incorrect result leads to

timing failure B

» On the right is an example of ﬁf,";‘ﬂ!g.e
the result led by incorrectly I
estimated WCET >
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WCET Analysis Quality
» Safety:

The estimated upper bound should always enclose the actual
WCET

» Tightness:

The estimated upper bound should be as close as possible to
the actual WCET

» Complexity:
There is a trade-off between accuracy and analysis complexity

Analyzers should balance it according to practical requirements

» The trade-off between analysis complexity and the quality
of results
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Why Not Just Measure WCET?

WCET Estimation?
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Why Not Just Measure WCET?
» Why NOT?

It is intractable to cover all execution traces of a program
(Think of a program with 10,000 loop iterations and an if-then-
else as the loop body, 2!%9%0 traces)

Hard to guarantee worst-case data input
hard to simulate worst-case processor state

Need real hardware

» BUT

Measurement-based methods are easy to implement
Can get a rough estimation of the execution time

Compliment with other analysis techniques to make the results
trustworthy
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Static Analysis Techniques

» How it works?

Given a program executable and the hardware the program is
running, use mathematical methods to calculate the safe upper
bound without any simulation

» Pros

Math theorems guarantee safety

So mandatory in safe-critical hard real-time systems
» Cons

Need to build complex mathematical models

Long analysis time for complex programs
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The Ingredients of WCET Analysis

» Flow Facts
Flow facts give us information on the control flow of the

programs, such as infeasible paths and loop counts, etc.

Automatic flow facts extraction and manual annotation

How to annotate flow facts in the program
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The Ingredients of WCET Analysis

» The Representation Levels of Programs

Matlab/Simulink — Component-based Design
Closed-Loop Engine Speed Control

choose Shart from
the Simulafion
ment o R b B crank speed
L] fradfsec)
dge 180 K i 1
h 4
¥ i1 Engine
ri) mass (k) A Charge radiz Speed
Desiréd rpm s Torque | Teng to rpm (rpmm)
Mmass(k+’
speed Throttle fng. | Throttle 2ag. ™ : N i b
set N Wz Airflow Fate > trigger Tload

point — Engine Speed, N 1 _@ Combustion
Controller = " “ehicl throttle deg (purple)
11 Compression ehicle
Throttle & hanifald Load Dynamics load torque Nm

Intake Grellon)
>

drag torque

1
C/C++/Java — High-Level Language Assembly or Machine Code
Int filtez(int *bpl, int *dlt)
{ STMFD SP!, {LR}
- STMFD SP!, {LR}
long int zI; STMFD SP!,{RO-RI2} , Push registers
21 = (long) (*bpl++)*(*dlt++); MRS R4, CPSR ; Push current CPSR
for (i = 131 < 6;1++) TST LR, #I ; called from Thumb mode?
Z1+=(long) (*bpl++)*(*dit++); ORRNE R4, R4, #0x20 ; If yes, Set the T-bit

return ((int) (zI >> 14)); /* x2 here */ STMFD  SP!, {R4}
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The Ingredients of WC.

» The Target Hardware
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analyze!
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Remarks on the Ingredients

» The Representation Levels of Programs

Precise timing analysis has to be done after all program
transformations

Generally, it is much easier to extract or annotate flow facts in a
higher representation level

The flow facts should be mapped from higher level to lower level
correctly, probably this mapping is done in parallel to code
transformation

» Hardware in real-time systems are becoming more and
more complex with features to improve average-case
performance (throughput), but less predictable, e.g. timing
anomaly
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» Static Analysis
Path Analysis
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A Generic Workflow of Static Analysis

//_

=3 7"_’;
-

o
i~

Est. WCET

( |  Compile source code into the binary of

target hardware

JZ Reconstruct the Control-Flow Graph
from the binary

the execution time of each basic block
in the CFG

Calculate the WCET using some DSE

——IB Model the HW architecture, calculate J

tools, e.g. ILP solvers, constraint solvers,
model checkers

SimpleScalar
Simulator

Figure from Chronos@NUS
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An Example of the Workflow

/* p >= 0 */ d,

d = p;

while(q<lo) - B, while (g<10) | *2

d++; / \d
q++;

r = dy;

Do micro-arch modeling to get

‘ the execution time of each BB

X4

5

weet = MAX Z(cost(ti ¥z ) s.t. flowfacts (1)

ti ;€TB

‘ ¥ BBi. b; = Z Tp g — Z zi; (2) ‘ Estimated WCET value

dst(ty_;)=BBi sre(t; j)=BBi

¥ Loop;, brai, = Ipb; - Z b;
BBjeBL;
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What is Path Analysis?
» Path Analysis

To identify the execution trace that leads to the longest
execution time

To identify infeasible paths of the program

Path analysis is a “Design Space Exploration” problem

» Popular Techniques
Tree-based methods (Timing Schema)
Path-based methods
Implicit Path Enumeration Technique (IPET)
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Timing Schema

» Represent the program in a syntax tree
» Calculate the WCET of a program by folding the tree

loop ®start
N
A fseq\‘\ Final
i Sec Program
q WCET
= C D if J
— 1 T~ 3072
E F G B.C.D
Syntax-tree F.GH
T(seq(S1,52)) = T(S1) +T(S2)
T(if(Exp) S1 else 52) =
T(Exp) + max(T(51),T(S2))
T(loop(Exp,Body)) =
T(Exp) + .
(T(Exp) +T(Body)) * (maxiter-1) & exit
Transformation rules (d) Structure-based calculation
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Timing Schema

» Some General Assumptions

» The Rules

22

No recursion
Explicit function calls

No “goto’’s

Bounded loop with single entry and single exit

H construct

MAXT

primitive

maxt(primitive)

T(primitive)

seqguence

T.ax f,(és EgiL E’ITLCE’.)

Z TILaiE .i((:ons trwct; )

1

alternative

mazt(alternative)

mazxt(condition)+
max(mazt(construct, ), maxt(constructy))

looPnumber mazt(looppead) mazt(init) + mazt(condition)
count * (maxzt(body) + mazt(condition))+
maxt(overrun_statement)
mazt(loopair) count x (mazt(body) + mazxt(condition))+
maxt(overrun_statement)
loopiime mart(loopiime) tire + maxi(timmeoul _stalerment)
subroutine | mazit(subroutine) T(organization) + mazt(body)
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An |

23

Lxample

int calc_center(image, x_center, y_center) /* 44
char image [MAX_ROWS] [MAX_COLS] ;
int *X_center, *y_center;
{
int pixel_count, x_coord, y_cocord, x_sum, y_sum; /* 48
pixel_count = x_sum = y_sum = O;
FOR(y_coord = O; y_coord < MAX_ROWS; y_coord++) SCOPE MAX_COUNT(HMAX_ROWS) S (42+426:76:32)
{ /* loop3 */
FOR(x_coord = 0; x_coord < MAX COLS:; x_coord++) MAX_COUNT(MAX_COLS) [* (42+26;76;32)
{ /* loopd */
if (image[x_coord] [y_coord]l) /* alt2 */ /* 146
{
int weight;
HAX_COUNT(MAX_AREA); /* marker =/ /* 40
wveight = calc_weight(image, x_coord, y_coord); /* 310 +
x_sum += x_coord * weight;
y_sum += y_coord * weight;
pixel_count += weight;
¥
¥
¥
if (pixel_count) /* alt3 =/ /* 22
{
*x_center = x_sum / pixel_count; /* 424
*y_center = y_sum / pixel_count;
¥
else
*xX_center = *y_center = 0} /* EB
return 1; f* 14
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An Example (2)

mazxt(calc_center) = 44 + 48 + mazi(loops) + mazt(alts) + 14 =
— 551 475 096
mazi(loopy) = 42 4 76 4+ 200 * ((mazt(loopy) + 32) + 76) 4 26 =
— 5b1 474 544
mazit(loop,) = 42 4 76 4+ 640 * ((mazt(ally) + 32) + 76) + 26 =
— 2 757 264
mazit(alty) = 146 4+ max(310 + mazi(calc_weight), 0) = 4 200
mazt(alts) = 22 + max(424,56) = 446
mazt(calc_weight) — 44 + 72 + mazxit(loop,) + 122 = 3 744
mazit(loop,) — 54+ 84+ 3 x ((maxt(loopz) + 32) + 84) 4+ 26 = 3 506
mazt(loop,) — 54+ 84+ 3 « ((maxt(alt,) + 32) + 84) + 26 — 998
mazit(alt,) = 146 4+ max(16,0) = 162
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The Workiflow of Timing Schema

» Decomposition

Decompose a statement into its primitive components (atomic
blocks)

» Code Prediction

Predict the implementation (compiled instructions) of each
atomic block

» Execution Time of the Atomic Blocks

Calculate the execution times of the atomic blocks according
to the execution times of the instructions

» Execution Time of the Statements

Calculate the execution times of the statements according to
the execution times of the atomic blocks
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An Evaluation of Timing Schema

» Pros

Simple method with cheap computation effort

Scale very well with program size

» Cons

26

Cannot deal with generic flexible program structures
Limited ability on specifying flow facts

Suffers compiler optimization
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Path-Based Methods

start

» The upper bound is deter-
mined by: first calculating

I“” __ Longest path
/ marked
3| A
=
7 el // Unit timing
' tpath =31
/ \\\\" thE.'EIdE'.r’ =3
clz 4D
.. || /WCET calc
/E 6 WCET =
— I'hl.=.E:l:Il.=.r + tpath*
F 8 oG] | | (maxiter-1) =

| N 3+31*99=

2 3072

the bounds of all paths, and
then searching the path
with longest execution time

» Possible paths are
represented explicitly

‘ exit

(b) Path-based calculation

27
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Model Checking
» Model Checking of WCET is Path Based

The state space is all the possible program paths
The model checkers deal with paths explicitly

» Basic ldea

Construct the CFG of a program as input
Transform the CFG into the MC model
Search the path with the longest execution time

28 Chapter 2:-WCET Analysis
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CFG Reconstruction — An |

vold main ()
{
int b;
int 1 =0, J =
while (1 < 10){
if (b)
Jjt++;
else
. j__;
1++;

}

(a) A motivating example
29

0;

Sla
'11'" ,f””
BBO | -~
5“ + /’,," -
BB1 | .-~~~
A ——————
BB2 |---——" " BB3
4
\ s,

5 BB4 BB5
...l___ \%?\“x;//?;/,,”’
BB7 BB6 1
...... |

(b) The CFG
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CFG - Model Checking Model

Loop Loop
Head Head
/\ Ipc. >= lpb, lpe; < lphb;

Exit LOOP Ipc;++

Exit Loop
Node Body [ : Nocde Body

Loop - Loop
Tail Tail
I I

The model checker runs an FSM, where each box represents a state in the FSM, and
the arcs represent the transitions. Labels on arcs specify the transition conditions.
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The Optimization Procedure

4

We can ask the model checker “is it YES or NO that ‘for all

execution paths starting from the initial state, globally WCET is
not greater than N*.

Additional procedures are needed to find the actual value of N

Algorithm 1 Finding the WCET using binary search

input:. The model M of a model checker. initial value of N
output: The optimal value found

set the upper and lower bound of binary search For example,
while (lower bound < upper bound - 1) If the actual WCET is 100, then
middle = (lower bound + upper bound) / 2; TRUE. for N= 100
check the property [] o(middle) ’
if ([ o(middic) is satisfied) FALSE, for N= 99
upper bound = middle;
else
lower bound = middle;
end while
return upper bound

31
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Evaluation of the Path-Based Methods

» Pros

Allows simple integration of HW modeling in the analysis
(expressiveness)

Guaranteed exact results

» Cons
Scalability problems (exponential state space)

If you use model checkers, some unknown performance
bottlenecks may occur
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Implicit Path .

Lnumeration Technique

» Can obtain exact answer without exhaustive search of all

the paths

» Hint: the objective

is to determine the worst-case

execution time, not the worst-case execution path

» ldea: finding the worst-case execution time = finding the
worst-case execution count of each basic block

33
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Implicit Path Enumeration Technique

» Solutions

34

The problem of finding the worst-case execution counts can be
formulated as an Integer Linear Programming (ILP) problem or
a constraint programming problem

The more constraints, the more accurate results

t _=max (2, c X,

max / \

execution time execution

of basic block B, count of basic

(constant) block B,
(variable)

subject to a set of constraints:
Ax<B
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Implicit Path Enumeration Technique

» Constraints — Restrictions on x-variables

Structural constraints: extracted directly from the CFG

If statement

d 1+

B, if (p) | v

;,“/ \\(ﬁ

q = l B‘} q l \_— B3 q=2:
else “‘f\ /f;_‘

q = 2;
r — q. 'B4 r=q \4

(a) Source code

35

X3

(b) Control flow graph

At each node:

Basic block count = 2. inputs
= 2. outpufts

Structural Constraints:
xi=d1=ds+ d;
753

Xy =dy=d
\4—d4+d-—d5

AN

Linear constraints

I
IS

X

- [
Il
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Implicit Path Enumeration Technique

» Constraints — Restrictions on x-variables

36

Functional constraints: telling how the program works, e.g.
how many times a loop iterates

int check data()

{ - Loop bound information

int i, morecheck, wrongone;— (mandatory) (loop 1-10 times)
morecheck=1; i=0; wrongone= -1; N <1 <10 8

while (morecheck) {“ )

if (data[i] < 0)

{wrongone=1i; morecheck=0; }}vBasic blocks B; and B; are
else e mutually exclusive and either

if (++i >= datasi Ey”f one of them is executed once.
morecheck=0; (23=0&x5=1)|(x3=1&x5=0)

} —

if (wrongone >= 0) - Basic blocks B; and B, are
return 0; -+ executed together.

else (521 &x21) | (x5=0&x0=0)
return 1;

} AN A

Sets of linear constraints
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An Example of ILP Formulation

Maximize
1:8fal 11 dSta 0 + 5 d0 1 + 1 dl 2 + 3 dl_3
SRR +5d2 7+ 7d34+5d35+ 7 dd 6
11 +8d5 6 + 4 d6 1
v
Subject to
BBO
\ === tcfg constraints ===
dsta 0 = 1
oy 4 bO -~d0 1 = 0
b0 - dSta 0 = 0
BB1 bl - dl 27— dl 3 =0
bl - d0_1 - dé6 1 =0
‘/}>/////\\\\4§\\‘ b2 - d277 = 0
b2 - dl_2 = 0
b3 - d3 4 - d3 5 =0
4 bd - d4 6 = 0
‘z///A\\\§\ b4 - d3 4 =0
b5 - d5 6 = 0
b5 - d3 5 =0
b6 - d4 6 - d5 6 = 0
b7 - d2 7 =0
CRR7 b0 = 1
fﬁBﬁZf: BB6 b7 = 1
| b6 - 10 b0 <= 0

// Definition of integers is omitted
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An |

Evaluation of IPET

» Pros

Allows to consider complex flow facts

Generation of constraints is simple and direct

Efficient tools

» Cons

38

Solving ILP is generally NP-hard (luckily, the WCET problem
can be reduced to network flow problem, which requires less
solving time)

Still difficult to encode the flow facts that specify execution
ordering
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Contents

4
» Static Analysis

Micro-Architecture Analysis

v vV VvV v
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Micro-Architecture Analysis

» Why Micro-Architecture Analysis?

The execution time depends not only on the program itself,
but also on the hardware where the program executes

Modern processors have lots of complex features that can

result in unpredictable execution time variation, which is very
hard to analyze

Timing Anomaly

» What Are Included in Micro-Architecture Analysis?
Cache analysis
Pipeline analysis (multiple issue, out-of-order pipelines)
Branch prediction and speculative execution
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Cache in a Nutshell
» Why Cache!

The “memory wal

Relative

Performance

10000

1000

100

10

41

1980

I”

B CPU Frequency
B DRAM Speeds

1985

1990 1995
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Cache in a Nutshell

» Why Cache!
Cost-speed trade-off

Program temporal/spatial locality

Memory hierarchy

CPU Registers

A / Cache \
Latency
/ Main Memory \ Bandwidth

/ Secondary Storage (Disk) \

Speed .
Cost per bit / TertiaryStorage (Tape) \

«—— C(Capacity (megabytes) ——»
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Cache in a Nutshell

» Types of Caches
LI Instruction Cache (32KB)
LI Data Cache (32KB)
L2/L3 Unified Cache (512KB ~ 6MB)
Shared cache in multicores

» Associativity
Cache are organized in terms of “cache lines”

Associativity specifies how the cache lines are organized and
how to map a memory block into the cache

Direct-mapped
Full-associative

Set-associative
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Cache in a Nutshell

» Direct-mapped Cache

Main Memory Address —»

F 3

4+————— Main Memory Address ————p

> 7 ¢ Tag Field Cache Block Field Word Field
0 128
Tag ‘ Cache
S 0| 384 .
: 1| 129 i =X % n;
0 2| 2 .
v Easy to implement

— Selector \.’12 -— F
i \ ast scan

3 bit |
Comparator . . . '
Requesiad Word But high miss ratio!
31 127 | 4095
5 bits
= Enabl
« # nable
Cache miss
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Cache in a Nutshell

» Full-associative Cache

4+— Main Memory Address ———

< 12

2 pla— 4 —p

Tag

¥
b

h 4

match

Associative Search

L A

r 3l
412 hits

45

\saaimn

> ::> Selector

« Main Memory Address .

«——— Tag Field ———— 14— Word Field—

3%

Requested Word 127

4095

A memory block can be mapped
to any cache line if not occupied

Efficient use of the cache

But notorious scan and
replacement overhead!
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Cache in a Nutshell

» Set-associative Cache

— T —e— 5 —re— 4 —>

- Main Memory Address >
0 31
Tag Field Set Field Word Field
Step #1
i = (x % #sets) + A (0<Asset size) Cache
0 384
. Step #2 Tag
A clever trade-off between direct-mapped ' Block £1 o
caches and full-associative caches Block#2 | 1 510
. Set |
Much less overhead than FA, but still harder to J> Il
|
analyze than DM '.‘ ||
\ I
\ I
. \ I
Good news to GP-architecture guys, but not so wie |
| et1
gOOd tO Real'Tlme gU)’S Associative Search Iu'llg Selector —
Over the set | r
l ) 127
+ Set 31 l
) Requested Word
<+ 7 bits >
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Cache in a Nutshell

» Replacement Policy
If cache miss occurs, kick out which cache line?
Round-robin, LRU, pseudo-LRU
Different cache replace policies have different predictability
» Write Policy

Write-through: whenever there is a write to the cache content,
the data is immediately written to the corresponding main
memory address, regardless of hits or misses

Write-back: only write dirty cache data to main memory when

the cache block is replaced, requires special bits in cache to tag
dirty data
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Cache Analysis in WCET Analysis

» Without cache analysis

In each BB, all memory accesses take fixed cycles, no variation
The execution time of a BB is not affected by the execution
history

When there is cache, all the situations are different

» Analysis of different types of caches

48

|-cache with different replacement policy
|-cache or D-cache?

Single-level or multi-level?

Dedicated cache or shared cache?
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Cache Analysis in the IPET Framework

» ldea

Model new constraints related to cache behavior into the
original ILP problem

No fundamental changes to the structure of the ILP problem

» How to!?

For each instruction, determine
Cache hit execution counts, time
Cache miss execution counts, time

—> go into the basic blocks
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Line Blocks

» The objective cache analysis is to determine how many

misses and hits in each BB = analyze conflicting memory
blocks

basic cache line block
— ; / block (1-block)
\\\\\\W
IHIHIIIII Szl : :
(—\/\I T —1 o Cacheline Basic Hoc]
o] .
| Eg T 2 0 By1|B1 B3| B
A 3 1 Bi> B1 BS B3>

t
% 2 B;;3|B1 |Bo| By
} \ 3 B2

(i) CFG (i) Cache table
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Modified ILP Formulation

Let:

,.Fm
'ij — cache hit count of |-block B;;

.m'!'
Yij — cache miss count of I- block B

¢’ — exec. time of I-block B;; given that it is a cache hit

qiiss — exec. time of I-block B;; given that it is a cache miss

n; — number of I-blocks of basic block B,

Maximize: N~N#u
it jm’ mrss mniss
ZZ GjNij TG N

subject to:

hit | __miss .
=N T j=L2...m

structural constraints
functionality constraints
cache constraints
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New Cache Constraints

52

only one l-block Bk.l maps to the same
cache line (first access is miss):

miss
x.,; <I

only two or more non-conflicting l-blocks
map to the same cache line (first access is

I'['liSS) : miss miss < 1

X + X

m.n

two ore more conflicting l-blocks 2 use CCG
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Cache Contlict Graph (CCG)

start

end
Control Flow Graph Cache Conflict Graph
(CFG) (CCG)
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Generating Constraints from CCG

Flow at node B, ;:
X = P(s 0y T Pananfed) T P(k.0kD)
= P(kde) T P(k.dnan) T Pkl kD)

p{s,m.n}

P (mm.q1,mm.71)
Cache hit count for I-block B;.;:

hit
Pkl kD) S X;S S P(skd) t Pk kD)

Starting Condition:
I)(S,ifj} +p(59”1”} +I)(S£) — 1
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Tightening the Constraints

» Assumptions for the Example

Each BB is mapped to a single cache line
BBI| conflicts with BB6, BB4 conflicts with BB5

yd
x|Br s = k;
J* Kk >= 0 */ ¥4 )
s = ki x| B2 while (k<10) [———
while (k < 10) {
if (ok)
gt
else |
Jj = 0;
ok = true;
}
K+t ; & Yo [Be x4 (i) {-block B, conflicts with [-block Bs,
] \ Y Y < J
oY x|Br = 5,
¥ o Pu1,5)=0

(i) Source code (ii) Control flow graph (CFG)
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Tightening the Constraints

x3 = 10 x|
x7 = 10-x5
x4 = 9-x|

We already know: 0 = Py, uo) = Min(x;, x,).

But this needs to be tightened: P, 7.1) T Py = Xs.
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Inter-Procedure Calls

» dl = I, xlI =dI =fl,x2 =fl =f2,d2.fl =fl
» x3.fl =d2.fl =d3.fl,d2.f2 =12

» x3.f2 =d2.f2 =d3.f2, x3 = x3.fl + x3.2

» Xhie3 | = p(3.1.fl,3.1.2)

vold maing)

{

B] ing (&1)Y;
B AneEd) « [BET

] 3 i

X2

void inc{int *pi)

[ P e
B *pit+;

1

(i) Code fragment (i) CFG with 2 instances of function inc (1it) CCG
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Direct-Mapped - Set-Associative

» What'’s the Difference!?

Since conflicting domains are set-associative sets, there are
more potential conflicts to be analyzed

Cache replacement policy affects analysis
» What to do?

We need to maintain cache states

Zn m!
[sz]s [X&Bij]: [Xka.f]! [X,Bm_n], [Bi.jﬁBk.i']: )
[B!‘._.fﬁBm.Pt]n [Bk.bBJI.jL {Bk.meJ‘l]! [Bm.ani.j] and i:O -
By, Bi ). (m—1)!

CCG - CSTG (a more concrete form of CCG)

Cost function is unchanged, but cache constraints are different
now

58 Chapter 2:-WCET Analysis 2009/3/9



Cache State Transition Graph

¥
x|Br g - k;
Y d, do
% | B2 while (k<10) [———
———— Y _d;
x3| B3 if (ok)
Bs = _ .
"’Iﬁ\\ » d;

L

d xg | Bs k++;

\

N

X7

B+

.'rzj:

59

Y dio
CFG

N
J

CCG Cache state transition graph
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New Cache Constraints

x1 [ B s = k;
Y 4 d
B, 8
X |22 while (k<10) [
———\ 4
x3| B3 i (ok)

dy \;;ds
]

i _ 0;

Xy B4 14+ » X5
_ ok=true;

A

s | Bs .
\ do Xs kL++,

N

r = 3;

+ do
CFG

| The execution count of B, = the sum of inflow

L.

X7 B_.-'

For each node, sum of inflow = sum of outflow

Starting condition

AW

Cache hit lower bound: x;"g >
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Data Cache Analysis

» Two sub-problems
Determine load/store addresses

Model worst case data cache hit/miss counts

» Difficulties

L/S addresses may be ambiguous or may change, usually
dynamic data structures are banned for static analysis

Data flow analysis is required

» Solutions
Extend cost functions to include data cache miss penalties
Use linear constraints to solve address ambiguity problems
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Two-Level Analysis

» Data flow analysis

To determine the absolute data addresses of LD/ST
instructions

Very difficult, but algorithms already established
» Data cache conflict analysis

Given the results of data flow analysis, construct a data cache

conflict graph, and use ILP techniques to bound the data cache
hit and miss counts

» Cinderella works on the second sub-problem

62 Chapter 2:WCET Analysis 2009/3/9



Modified Cost Functions

__ . hit miss
Xi = Maddr T Maddy

Exec. time = ZE(C:}h'tx?f+C:}m R
i

_hit . hit d_miss . miss
2 (cgddr Maddr+ Caddr Maddr)
dr
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Data Cache Contflict Graph

» ldea

By data flow analysis, we can identify a set of possible data
addresses accessed by LD/ST instr.

Different LD/ST instructions that access the addresses in the
same data cache set may leads to data cache miss

Similar to |-cache analysis, use data cache conflict graph to
capture the control flow of LD/ST instructions to analyze
potential data hits and misses
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Data Cache Contflict Graph

x1 0x000 1da 0xG, r2 -/l i=0
void £0) , Ox004. lda  Oxa, r3 o S
\ . : 0x008 lda - 0x100, r4
int 1, array[lol ‘ “xl Q10 cmp;i bge 2 3 0x028 .
X =0 X 0x014 1d i r4) [r2*4 r5 load arrav[i
: while'(i < 10) ¢ 0x018 addi r5, 1, r5 .;// ++array{il]
X ++array[i]; 0x01lc st r5, (r4){r2*4] // store array(1i]
i ! UX020 addi rZ, I, 2 77 ++1 —
} ! 0x024 cmpibl r2, r3, 0x014
X } : - X3 0x028 ret
' .data

0x100 // array elements

Assume data cache is direct-mapped, and each cache
M0x01e.0x100 line has 4 bytes

Data address rage [0x100, 0x124] span 10 data cache
lines

M0x014.0x100 Take the set at Ox 100 for example, see the graph on the

left
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New Constraints
» In D-CCG, sum of inflow = sum of outflow

Mox01c.0x100

Mmox014.0x100=P1= P2
MOx01c.0x100=P2=P3

m .
pi o 1 10x014.0x100

» The bounds on the execution counts of each LD/ST

instruction instance S Mox01dadir, = %2

addr;
Z mDXO-lc.addrj =Xx2
addr_,-

» Hit and miss relation
LD-incurred cache miss is similar to instruction cache

ST-incurred cache miss depends on write policies: write
through or write back, with/without write allocate
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An Evaluation of the Above Analysis

» Pros

An elegant way to integrate hardware modeling into WCET
calculation

» Cons

The number of ILP constraints grows greatly, because the CCG
is a fine-grained representation of cache states

So the time to solve the ILP problem may be very long, not
feasible for real-life programs

» Solutions

Try some other methods that can do cache analysis in a more
coarse-grained way by sacrificing some precision
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Timing Anomaly
» Counterintuitive Behaviors

N Latency of instruction A
in-order
resource

| A

B C
out-of-order l l, l l l
resource : : ; ;

varies by Af=-7 cycles.

13 |

Instructions
A LD r4,0(xr3)
B ADD r5,r4,rd )
C ADD rll,rl0,r10 )
D MUL rl2,rll,rll
E MUL r13,rl2,rl2 )
12 : 14

LSU
IU
MCIU

LSU
IU
MCIU
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Timing Anomaly

» A Formal Definition

At — Latency variations of several instructions S’ (the whole
instruction sequence is S)

AC — execution time change of the whole instruction sequence

» As long as one of the following conditions hold, we say
that a timing anomaly occurs

At>0->AC<O0
At<0—>AC>0
At>0 > AC > At
At<0 > AC <At
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Domino Effect

RN R R iii P

1i2{314{516/7:810i1011112113{14/15 16/ 17 18] 10/20:21 22/ 23 24281261 21' 28120} 3031 32 33:34i35}36i37:38

A T =i-i.55
Initially

LSU empty

MCIU Pipeline

U

LSU

MCIU

First instruction

e One cycle delayed
A ADD 4,13, 13 *+
B in-order resource - == e D *,_‘.
B out-of-order resource C MUL rl0,r4,r4 D';
D Iw r3, 0x8 -~
E rll,rl0,r10

70 Chapter 2:WCET Analysis 2009/3/9



Possible Solutions

» Occurrence of timing anomalies depends on both
hardware features and code structure
» How to eliminate timing anomalies!?
De-active caches
Use synchronization points
Choose more predictable hardware platform

Code reordering
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Contents

Measurement-Based Methods

v Vv v VvV V9v v
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A Review of Problems of Static Analysis

» Problems of Static Analysis

Computation efforts exerted to cover all possible situations =
possible scalability problems

Hard to conduct micro-architecture models

Micro-arch analysis of complex hardware may encounter
scalability problems

» So Measurement-Based Methods
What can we benefit from it?
How to do measurement-based analysis?
What are the technical issues!?
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Measurement-Based Methods

— The Big Picture

Analysis phase

-\ Measurement phase

<

- ~ Calculation phase

~ =
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Tool Architecture

Matlab/Simulink + TargetLink

C-Code

Analyzer

Instrumented
C-Code for Test
Data Gen.

Path
Information

xml

Instrumented
C-Code for Exec.

Test Data

Calc

WCET Bound

xml

Exec Time Model
Information

¢ Time Meas.

Measurement
Framework

75

xml

Execution Times —— -
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Issues in Measurement-Based Methods

» How to measure?
Measurement tools: HW, SW

End-to-end, or just measure code segments?

4 HOW to cover more execution traces?
Due to worst-case input
Due to worst-case hardware states

Path/Trace coverage

» What do the results reveal?
Single WCET value, or a ET distribution?

This issue equals “what’s the use of measurement-based
methods?”
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How to Measure?

» End-to-end or measuring code segments!
End-to-end is easy, but inaccurate, intractable

Measurement of code segments + Calculation

» How to Measure!?

Software instrumentation
Put time recording in the analyzed codes

Accuracy?

Hardware instrumentation

Logic Analyzers, oscilloscopes, ...
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Hardware Instrumentation

System Under Test

P1 4];‘;:‘: set 2

.dcall df
ldab 51
ldab OFST-1,s
bith £15

bne L22

lasb 81 Hardware Interfaces
L22 i * Simple /O ports

lzas 2,5

+ Address lines
+ Debug interfaces
* Communication devices

rei

Instrumentation Interface EEEEEEEEEEEEEEEEEEEEEEEEEEEEEN
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Execution Time Measurement Framework

* t

* target.ps000.c

* testdata.xml

target.bin
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Instrumentation Methods

» Requirements

Instrumentations (IPs) may not alter program flow or
execution time in an unknown or unpredictable way. IPs have
to be persistent if changing either.

Execution always starts with the same (known) state (cache,
pipeline, branch prediction,...)

» Design Decisions

80

Control flow manipulation? Input data generation!?
Number of measurement runs!?

Resource consumption?

Required devices!?

Installation effort!?
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The Steps of Measurement-Based Analysis

| Static analysis: reconstruct CFG from the code
Program partitioning
Test data generation

Execution time instrumentation
WCET -calculation

A

»  This is only one exemplary workflow, other measurement-
based methods may have different workflow
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Program Partitioning

» What is a program segment?
Roughly a sub-graph of the CFG

» Why program partitioning?
Reduce problem state space =2 reduce
analysis efforts

Precision is sacrificed

» Partitioning granularity

Fewer segments =2 less instrumentation
efforts but higher analysis computation
overhead

» “Good” partitioning
Balance “the # of program segments” and
“the average # of paths per segment”
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Program Partitioning

» An Example of Program Partitioning

83

% o PB=100
Path Bound | |PSG| | #Paths (} |mj|) 70 1

1 30 30 =7

5 6 14 5 jg .

70 3 14 20 N P
20 2 18 S I
100 1 72 0l e -.p;:; .

(a) Partitioning Results 0 0 1o 20 a0

R=R- - E = R e e e ]

Program segments ( [PSG|)

(b) Dependency between |PSG| and > |11;]

int x; 27 }
28
int main_nice_partitioning( 29 } else {
int y, int i, int a., int b) 30 x++; // BB 17
31 }
if (x = 1) { 32 x++; // BB 8
xt++; // BB 2 33
} oelse { 34 // BB 6
x—:; // BB 4 35 if (b = 2} {
} 36 // BB 18
// BR 3 37 if (a = 1) {
if (b = 1) { 38 x++; // BB 20
39 } else {
if (a =1) { 40 x—: // BB 12
/¢ BB T 41 }
if (= = 3) { 42 x++; // BB 21
x++; // BB 9 43 }
} else { — // BE 19
// BB 11 45 if (y = 1) {
if (x = 2) { 46 x++; // BB 23
x++; // BB 12 47 }oelse |
} else { 48 x——; // BR 23
// BB 14 49 }
if (x = 4) | 500}
x++; // BB 15
}
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Test Data Generation

» What is the so-called “test data’’?

Roughly, the values of a set of variables that leads to one of the
paths of a program segment

» What is the use of “test data’’?

Put code instrumentations at the segment boundaries, and set
the test data to some specific values, which can leads the
program to the desired path

» How to obtain “test data”? — model checking

Model is safe
Model

Assertions Checker

Model is unsafe

(counterexample)
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Test Data Generation
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Test Data Generation

» Execution Time Measurement

Use software instrumentation to guide the program

Use hardware instrumentation to measure execution time
» Enforcing Predictable Hardware States

Challenge: on complex hardware where the instruction
timing depends on the execution history

Code instrumentations can be used to enforce an a-priori
known state at the beginning of a program segment, thus
avoiding the need for considering the execution history

» WCET Calculation

Use ILP, Model Checking, or any optimization tools to do
longest path search
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Probabilistic WCET Analysis
» What is probabilistic WCET analysis?

It gives you a distribution of the execution time of a program,
instead of single WCET value

» Why probabilistic WCET analysis!?

To determine the probability distribution of the execution
times of tasks, then used to do probabilistic schedulability
analysis in soft real-time systems

Helping to detect the “WCET hotspot”, used for WCET
reduction

Helping to analyze the execution behaviors of a program
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Probabilistic WCET Analysis

» Solution: Probabilistic Timing Schema

Timing Schema
W(A) = exec time A
W(A;B) =W(A)+W(B)
W(if E then A else B) =W(E) + max(W(A),W(B))
Probabilistic Timing Schema
Sequential execution: Z =X +Y
Distribution functions: F(x) = P[X = x], G(y) = P[Y =]
To compute H(z) = P[X +Y = z7]
If XandY are independent  H(z) = /F(;lf)(;'(f; — r)dx
If joint distribution between X and Y is given as J(x,y) H(*) = [Hy:zi(i’-y)

H(z) =

If the joint distribution is unknown 92 min(F (x). G(y))
L+y_z Ardy
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Probabilistic WCET Analysis

Probabilistic Timing Schema

Conditional execution: Z = max(X,Y)
Z = E + max(X,Y), max(X,Y) has the distribution H(z)

O? min((F(x), Gy
ne- | (F(2).G(s)
max(z,y)=z LUY

Iteration: can be analyzed as a combination of sequence execution and
conditional execution, loop bounds should be known

» Determining Probability Distributions

To determine the actual distribution of the execution times of
individual units (basic blocks)

Run the units under a large number of test scenarios
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i Obtaining execution traces. This is done by manually or automatically
_-- inserting instrumentation calls into the source code, or by automatically

-

-7 i adding instrumentation codes into the compiled assembly code

______________________________________________________

]
)
. A !
Instrumentation ’: 1 In this step, the CFG of the assembly code is X
I | reconstructed, and then converted into a syntax tree

Compute the distribution functions of each node from the traces; |
Determine the joint distribution function of pairs of nodes; :
:

1

1

Loop identification, loop iteration extracted;
This step is VERY computation expensive!!

Structure
Analysis

. Generate a program for WCET calculation, this is based on

| separating the timing analysis into a program generation part and
| an execution part.

i The generator traverses the tree in reversed order and applies

| the timing schema rules, and the results is a set of commands on
' how to compute the timing program for the given tree.

D

' Run the generated program with the program to

L}
1
I be analyzed, and calculate the probabilistic !

Timing progr.  |e---------="""""""" R .
execution ' distribution of the execution times of the program.

Timing Prog. ______. -------
Gen%rato? T

y
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RapiTime Exemplary Results Report

— ]
TR ER N
Tirme: 0.308ns, Probabiliey: 2,295E-3
‘I -
01-
E -
=
1]
o]
=
o
0.01 -
|
1] 10 20 30 40 50 B0 0 20 a0 100 110 120 120
Time (ns)
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A Survey of WC.

+T Tools

Tool Flow Proc. Behavior Bound Calc.
ai'l value analysis static program analysis IPET
Bound-T linear loop-bounds | static program analysis IPET per func-

and constraints by tion

Omega test
RapiTime n.a. measurement structure-based
SymTA /P | single feasible path | static program analysis for | IPET

analysis [/D cache, measurement for

segments

Heptane - static prog. analysis structure-based,

IPET

Vienna S.

Vienna M.

Vienna H.

Genetic Algorithms
Model Checking

static program analysis
segment measurements
segment measurements

IPET
n.a.

IPET

SWEET value analysis, ab- | static program analysis for | path-based,
stract execution, | instr. caches, simulation for | IPET-based,
syntactical analysis the pipeline clustered
Florida static program analysis path-based
Chalmers modified simulation
Chronos static prog. analysis IPET
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A Survey of WCET Tools

» Support of Architectural Features

Tool Caches Pipeline Periphery
alT I/D, direct/set associative, LRU, | in-order/out-of-order PCI bus
PLRU, pseudo round robin
Bound-T - in-order -
RapiTime n.a. 1n.a. 1n.a.
SymTA/P | 1/D, direct/set-associative, LRU n.a. 1n.a.
Heptane [-cache, direct, set associative, LRU, | in-order -
locked caches
Vienna S. jump-cache simple in-order -
Vienna M. | n.a. n.a. n.a.
Vienna H. | n.a. n.a. n.a.
SWEET I-cache, direct /set associative, LRU m-order -
Florida I/D, direct /set associative in-order -
Chalmers split first-level set-associative, unified | multi-issue superscalar | -

second-level cache

Chronos [-cache, direct, LRU in-order /out-of-order, -
dyn. branch prediction
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Contents

4
4
4
» WCET Analysis of RTOS
4
4
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Introduction of This Research Topic

» Real-Life Real-Time Systems are Composed of
RTOS
Applications
» Timing Correctness of a Real-Time System is guaranteed

by
Schedulability analysis in the high level
WCET analysis in the low level

» Applying WCET tools for application programs to RTOS
Poor results are reported (up to 86% pessimism)
Hard to handle some RTOS specific programs

» Additional analysis techniques are required!
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WCET Analysis of RTEMS

» Research Group
Antoine Colin & Isabelle Puaut @ IRISA

» Experiment Setup
WCET tool: Heptane (tree-based)
RTOS: RTEMS
Manual revision to codes
|2 out of 85 system calls, span across 91 files, 14,532 LOC
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WCET Analysis of RTEMS

» Problem |: unstructured control flow

Such as goto statements, multiple loop exits, ...
Because Heptane is a tree-based WCET analysis tool

Consequences: (1) rewriting the codes; (2) only a small subset
of RTEMS system calls are analyzed

» Problem 2: Dynamic function calls implemented through
function pointers
Real called functions are determined at runtime

Solutions: replace them with static ones
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WCET Analysis of RTEMS

» Problem 3:Hard to determine loop bounds since the
loop bounds are related to dynamic runtime behaviors

Task queue, message queue manipulation

Solution: Manually bound loops by an investigation of RTOS
codes

» Problem 4: Blocking system calls

» Problem 5: Context switch overhead

» Putting them all together, an average of 86% pessimism in
the estimated results is reported
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Predictable Architecture Design @ TuWein
» Challenges to WCET Analysis — Side Effects

99

It is apparent that the state space can be reduced via
composable or hierarchical design/analysis

Side effects are defined as task interactions that cannot be
traced back to task interface. For example, the shared cache
may enable task A to influence the execution time of task B by
displacing B’s data in the shared region.

Side effects are a big problem to composable timing analysis
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Predictable Architecture Design @ TuWein

» Side Effects in Simple Hardware Architectures

Variable program execution time due to
Unpredictable data input
Instructions with variable execution cycles dependent on operands
» In Complex Hardware Architectures
Different task instances may have different execution time

Scheduling without preemption: task instances from different
tasks may execute alternatively, creating complex hardware
states which are hard to predict

Scheduling with preemption: HWV states change at preemption
points, hard to predict when preemption will happen

Modern complex pipelines = flush not practical
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Predictable Architecture Design @ TuWein

» Side Effects in Multicore Processors

Shared cache: if two tasks on two different cores share the
same cache lines, it is hard to bound the effects of mutual
replacement of cache contents

Other shared resources have similar problems

Simultaneous Multi-Threading (SMT): also called hyper-
threading by Intel, multiple tasks on the same core share the
function units at instruction level, hard to analyze the execution
time of each task with good precision
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Predictable Architecture Design @ TuWein

» Solutions

The basic philosophy of Puschner’s solutions is to try every
possibility to AVOID unwanted interactions

(1) The use of single-path code in all tasks

(2) The execution of a single task/thread per core

(3) The use of simple in-order pipelines

(4) Statically scheduled access to shared memory in CMPs

The solutions require redesign in both hardware and software
(at both system level and application level)
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Predictable Architecture Design @ TuWein
» An RTOS for a Time-Predictable Computing Node

f b
I |
: App”catlon Computer i e ...................E
1 : :
i ! : Symbols i
| o XT® . g
. A8
: D a‘ i Time-Triggered
| = i State Message Port
| Qe | | ’
, oc g
| : i
! _E g - n| Control Signal Port
| < = . i
| Svo |
1 H i
| =g ' Memory Element
o) O | ry

! Sa_f§T}" = g = | - for a Single State :
: Critical = | Message
: Connector :
! Unit : E Synchronized Clock |
\ F :

i

1

————————————————————————————————————————————————
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Predictable Architecture Design @ TuWein

» Requirements on Hardware Architectures

|04

The execution times of instructions are independent of the
operand values

The CPU support a conditional move instruction having
invariable execution times

Direct-mapped or set-associative caches with LRU
Memory access times are invariable for all data items

The CPU has a programmable instruction counter that can
generate an interrupt when a given number of instructions has
been completed
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Predictable Architecture Design @ TuWein

» The SW Architecture — Task Model
Simple Task Model

I/O operations will never block a task

No statements for explicit I/O or synchronization within a task

All inputs are ready at task startup

Outputs are ready in the output variables when the task completes
Single-path Tasks

Transformation techniques
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Predictable Architecture Design @ TuWein

» Single-Path Transformation

106

tmpl := exprl;
if cond tmp2 := expr2;
then result := exprl; test cond;
else result := expr2; movt result, tmpl;
movi result, tmp2;

) (hy,...hy) = FI(v,',...,v,")

if cond
_ N (h;,....h,") = F2(v,,....v,)

a ) SO ) cond (v = ()
il e not cond: (vy,...v,)) = (h;'...h,")

finished, = false;
for i, =1 to expr do
begin
if not cond-new
then finished, = true;
if cond-old and not finished,

then smmnts:
end

-- conditions so far: cond-old
while cond-new do max expr times
stmnts:;
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Predictable Architecture Design @ TuWein
» The SW Architecture — RTOS

There must be no jitter in the execution times of the RTOS
routines

Kernel designed using the single-path techniques

Communications: messages are scheduled at fixed time off-line

Host Computer
Message || iwc Tack | esse | Local buffer accessed by tasks
schedule ; 2 Global buffer managed by IPC
L 3 Inter-node communication
Sender 3 . . .
Destination 4 Message schedule defined off-line
Local buffer
Y
Temporal Firewall
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Predictable Architecture Design @ TuWein
» The SW Architecture — RTOS

Scheduler
Time-triggered
Schedule is determined off-line
Scheduler invoked at each global clock tick
Mode-switch is implemented by schedule switch, also determined off-
line
Tasks are divided into “initialization phase” and “real-time phase”, the
former is non-real-time, the latter is managed by the RTOS
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Predictable Architecture Design @ TuWein

» An Example

109

TC TC
TB | TB | TB (resumed)
TA TA
os [os |  [os ]
-
} t
Global clock tick
Task Time of activation|Execution time|Termination
Kernel 0 1341 1341
Scheduler 1341 5634 6975
Kernel 6975 1626(+43) |8644
Ta 8644 611 9255
Kernel 9255 1626(+43) 10924
IPC 10924 628 11552
Kernel 11552 1626(+43) |13221
Tr 13221 1000 14221
Kernel 14221 1626(+43) |15890
Te 15980 37 15927
Kernel 15927 1626(+43) 17596
Te(resumed)|17596 1771 19369
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Predictable Architecture Design @ TuWein

» Evaluations

110

Puschner has posed insights on design for predictability
Single-path technique is too costly and rigid

Requiring both specialized hardware and software (RTOS) may
be impractical

In all, the ultimate predictability is achieved at the cost of
system flexibility
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Combined Schedulability & WCET Analysis

» Schneider studied combined schedulability & WCET
analysis in his Ph.D. thesis, issues discussed in his work
include

The quality of WCET analysis of RTOS can be improved by
considering both the applications and the RTOS

In real-life multitasking real-time systems, tasks are executed in
an interleaving manner (interruptions), but this is not
considered in traditional WCET analysis, under such a
circumstance, both scheduling and WCET must be re-think
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Combined Schedulability & WCET Analysis
» Why Combined Schedulability & WCET Analysis!?

112

Traditional schedulability and WCET analysis are performed in
a hierarchical manner where the WCETs of the tasks are
calculated first, then the results are fed to schedulability
analysis

It is implied that even a task is interrupted, the WCET of all its
segments equals the WCET of the task without interruptions

In multi-tasking systems running on complex hardware, the
assumptions for hierarchical analysis is invalidated
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Combined Schedulability & WCET Analysis

» Why the assumption is invalidated!?

As we have discussed in previous slides, the WCET of a

program highly depends on the processor states in presence of
complex hardware

If a program is interrupted during execution, when it resumes,
the hardware state is not identical to that at the interruption
point, the influences are complex:

Some needed cache contents are swapped out, so the WCET in
presence of interruption is larger than that without interruption

If timing anomaly occurs, the displacement of cache contents may
leads to a smaller WCET
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Combined Schedulability & WCET Analysis

» How to deal with these problems!?

Consider the scheduling behavior within the WCET analysis
process, and capture the state change at the interruption
points

Re-calculate the WCET by considering the state change
Re-do schedulability analysis with new WCET values
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Combined Schedulability & WCET Analysis

» The Old and New Analysis Framework

Task parameters
eg. T, D,,i

AV

J weer | Schedulability Yes
Analysis Analysis don‘t know

7oy
Cache related
preemption costs

WCET | | | schedulability Ygf
Analysis Analysis don‘t know
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A Summary of Research Practices in WCET

Analysis of RTOS

Colin Schneider Sandell Petters Puschner
RTOS Analyzed RTEMS 0OSE OSE L4
Analysis Tool HEPTANE aiT aiT/SWEET Petters’ Tool
Average Overestimation 26% nfa n/a n/a
Problems Due to Program Features
Irreducible Program Structure P2 P2
Indexed Jumping S
Problems Due to Lack of Application Information
Hard to Bound Loops Due to Runtime Properties P2,3 P2,3 N
Dynamic Function Calls P4 P4
Blocking System Calls N
Lack of Knowledge on System Call Contexts P3
Lack of Knowledge on RTOS Running Mode P2
Problems Due to Task Switching and Inter-Task Interference
Timing Effects Due to Task Switching P1 P4
Timing Anomalies Due to Preemption P1 P4
Inaccurate Execution Time of Context Switches N S N P4
Inter-Task Interference Due to Resource Sharing on Multicores N N
*  “S": the problem is properly solved
#  “N”:the problem is circumvented in related research
#  “P”:the problem is partially solved, but needs further development. Possible problems may be low scalability of the analysis (P1),
too much user intervention required (P2), low quality of the results (P3), or the adopted techniques are too restrictive (P4)
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A Summarization of Problems

» Problem I:Irreducible program structures
Solution: choose a proper WCET tool
» Problem 2: Lack of application information greatly affects

analyzability and the precision of the results
Bounding loops

Dynamic function calls and blocking system calls
System call context and RTOS working mode

Solution: extract helpful information from applications

» Problem 3: multi-tasking

Solution: develop analysis techniques that can safely bound the
effects of task switching
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Challenges on WCET Analysis of RTOS

» Does Single WCET Value Suffice?

The running of RTOS is mode-based, so a single WCET value
regardless of execution mode is not sensible

Related techniques, such as parametric ILP should be
developed

» Considering Both Applications and RTOS

Application information may be very useful to RTOS analysis,
e.g. bounding loops

What kinds of application information should be
communicated to the analyzer!?

How can these information be communicated to the analyzer?
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Challenges on WCET Analysis of RTOS
» Combined Schedulability and WCET Analysis

There is a mutual communication between schedulability
analysis and WCET analysis

Control of the state space explosion

» Raising the Degree of Automation

Almost all related research practices reported low degree of
automation in the analysis

WCET tool designers must always keep the issue of
“automation” in mind when designing tools

The degree of automation is the largest factor that affects the
usability of a WCET tool
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Challenges on WCET Analysis of RTOS

» Managing Analysis Complexity in the Multicore Era

Problem: fine-grained access to shared resources (L2 cache,
on-chip bus, ...), and for most existing architectures, we have
very limited ability to control the behavior of these shared
resources

Solution: Performance isolation techniques (cache partitioning),
since such techniques can “create” an isolated environment for
each core, and at the same time still maintains the flexibility
that shared resources provide with
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Challenges on WCET Analysis of RTOS

» To Design or to Analyze!?
Analyze

No need to change existing hardware or system; analysis must be
done if you're to analyze fabricated systems

But lots of hardware features or management policies are not
designed for real-time, these features make the analysis very hard

To guarantee predictability on unpredictable hardware, a lot of
pessimism is introduced into the results = system over design

Design
To design hardware or software with the consideration of real-time
from scratch can yield very predictable systems
Predictability is achieved by sacrificing flexibility

New hardware requires re-design of the system, from hardware, to
programming tools, to OS and applications

A Graceful Balance!
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Cache Partitioning and Locking

(2) SN
Stafic locking PE, ) fedi
No partition egion 1
Hegion 2
(b) SC
Static locking i
Core-based partition Region 1
{with inter-task reload) : § % 7} Region 2
{Te.Ta
(c) DT
Dynamic locking . .
Task-based partition Static Dynamic
locking locking
AR B MNo partition SN -
id) DG Task-based ST DT
Dynamic locking partition
Core-based partition A Core-based sC DC
(with inter-task reload) L partition
=1 2
iy, N oo e A A ,
IT. T M. TJ (T, T .7 {e) Comparison Table

Partitioning is used to avoid inter-task interference regardless of single- or multi-core.
Locking is used to enforce predictability in terms of cache hits/misses
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Contents

New Challenges and Future Trends

vV Vv Vv V9V V9v V9v V9
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Trends in Hardware

» More software control
Software-controlled cache locking
Scratchpad memory
More predictable caches or pipelines
» Multi-core processors
+ multiple simple cores
- Shared cache = inter-task interference
- Share whatever, on-chip buses or networks
» Execution Behavior

Traditionally, researchers assume single task execute on single
core, but this is not necessarily the whole story

A big gap between WCET and ACET

124 Chapter 2:WCET Analysis 2009/3/9



Trends in Software

» Levels of Abstraction
Traditionally C code or assembly code

A trend towards higher-level abstraction, e.g. OO languages,
model-based design

More dynamic control structure, hard to reconstruct CFG
more dynamic data structure, memory access
JavaVM, JIT compilation

» Component-based design
FSM synthesize highly unstructured code
Parameterized execution time/WCET
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Trends in Analysis Techniques

» WCET-aware Compilation

Try to tackle the analysis complexity problem in compilers

Develop compilers that can generate predictable codes
» Raise Automation Level

Automatic extraction of flow facts, less user intervention

Flow facts mapping across different representation levels
» Parametric WCET Analysis

Obtain a function for WCET results, instead of a single WCET
value

» Integrate WCET analysis with power-aware techniques
» Integrate WCET analysis with scheduling analysis
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Recommended Readings

v

Books

Flemming Nielson, et al, Principles of Program Analysis, Springer, 2004.

John L. Hennessy and David A. Patterson, Computer Architecture, A Quantitative Approach, 4th edition,
Elsevier, 2006.

Mostafa Abd-El-Barr and Hesham El-Rewini, Fundamentals of Computer Organization and Architecture, John
Wiley & Sons, 2005.

Related Course Pages

http://ti.tuwien.ac.at/rts/teaching/courses/wcet-ss08
Referenced Papers

Surveys and Overview Papers

R.Wilhelm, et al. The worst-case execution-time problem—overview of methods and survey of tools. Trans. on
Embedded Computing Sys., 7(3):1-53, 2008.

Mingsong Lv, Nan Guan,Yi Zhang, Qingxu Deng, Ge Yu, Static Timing Analysis of Real-Time Opearting Systems —
Survey of Research and New Challenges, NEU-RTES lab report, 2008.

Bjorn Lisper. Trends in Timing Analysis. 2006.

C. Ferdinand and R. Heckmann. Worst-case execution time - a tool provider’s perspective. In ISORC 2008.
Raimund Kirner, Peter Puschner. Classification of WCET Analysis Techniques. In ISORC 2005.

Rainmund Kirner, Peter Pushner. Obstacles in Worst-Case Execution Time Analysis. In ISORC 2008.
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Recommended Readings

»

J. Gustafsson. Usability aspects of wcet analysis. In ISORC 2008.

J. Gustafsson and A. Ermedahl. Experiences from applying wcet analysis in industrial settings. In ISORC 2007.
Jan Gustafsson, et al. ALL-TIMES — a European Project on Integrating Timing Technology. 2008.

Static Analysis

Xianfeng Li, et al. Chronos: A Timing Analyzer for Embedded Software. 2006.

Yau-Tsun Steven Li, et al. Cinderella: A Retargetable Environment for Performance Analysis of Real-Time Software.
In EuroPar 1997.

Yau-Tsun Steven Li, et al. Performance Analysis of Embedded Software Using Implicit Path Enumeration. In DAC
1995.

Yau-Tsun Steven Li, et al. Performance Estimation of Embedded Software with Instruction Cache Modeling. 1999.

Yau-Tsun Steven Li, et al. Cache Modeling for Real-Time Software: Beyond Directed-Mapped Instruction Caches.
1996.

Mingsong Ly, et al. Performance Comparison of Techniques on Static Path Analysis of WCET. In EUC 2008.

T. Lundqyvist and P. Stenstrom. Timing Anomalies in Dynamically Scheduled Microprocessors. In RTSS 1999.
J. Reineke, et al. A Definition and Classification of Timing Anomalies. In WCET 2006.

Measurement-Based Analysis

Ingomar Wenzel, et al. Measurement-Based Timing Analysis. 2008.
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Recommended Readings

v

Ingomar Wenzel. Measurement-Based Timing Analysis of Superscalar Processors. Ph.D. thesis, 2006.

Guillem Bernat, et al. pPWCET: a Tool for Prebabilistic Worst-Case Execution Time Analysis of Real-Time Systems.
2003.

Guillem Bernat, et al. WCET Analysis of Probabilistic Hard Real-Time Systems. In RTSS 2002.
WCET Analysis of RTOS

M. Carlsson, J. Engblom, A. Ermedahl, J. Lindblad, and B. Lisper. Worst-case execution time analysis of disable
interrupt regions in a commercial real-time operating system. 2002.

D. Sandell, A. Ermedabhl, J. Gustafsson, and B. Lisper. Static timing analysis of real-time operating system code. In
I'st International Symposium on Leveraging Applications of Formal Methods, 2004.

A. Colin and I. Puaut. Worst-case execution time analysis of the rtems real-time operating system. | 3th Euromicro
Conference on Real-Time Systems, 2001.

G. Khyo, P. Puschner, and M. Delvai. An operating system for a time-predictable computing node.The 6th IFIP
Workshop on Software Technologies for Future Embedded and Ubiquitous Systems, pages 150161, 2008.

P. Puschner and M. Schoeberl. On composable system timing, task timing, and wcet analysis. In WCET 2008.

P. Puschner. Transforming execution-time boundable code into temporally predictable code. In 17th World
Computer Congress - Stream on Distributed and Parallel Embedded Systems, 2002.

J. Schneider. Combined schedulability and wcet analysis for real-time operating systems. Ph.D. thesis of Saarland
University, Germany, 2002.
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Recommended Readings

»

J. Schneider. Why you can’t analyze rtoss without considering applications and vice versa. 2nd International
Workshop on Worst-Case Execution Time Analysis, 2002.

M. Singal and S. M. Petters. Issues in analysing 14 for its wcet. Proceedings of the |st International Workshop on
Microkernels for Embedded Systems, 2007.

Vivy Suhendra, Tulika Mitra. Exploring Locking & Partitioning for Predictable Shared Caches on Multi-cores.

In DAC 2008.

Tools & Projects
ALL-Times:
aiT:
Bound-T:
RapiTime:
SymTA/P:
Heptane:
Vienna:
SWEET:
OTAWA:
Chalmers:

Chronos:
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http://www.mrtc.mdh.se/projects/all-times/�
http://www.ait.com/�
http://www.tidorum.fi/bound-t/�
http://www.rapitasystems.com/�
http://www.irisa.fr/aces/work/heptane-demo/heptane.html�
http://www.wcet.at/�
http://www.mrtc.mdh.se/projects/wcet/�
http://www.otawa.fr/�
http://www.ce.chalmers.se/research/group/hpcag/project/wcet.html�
http://www.comp.nus.edu.sg/~rpembed/chronos/�

Visit Our Website

» The Website of Real-Time Embedded Systems Laboratory,
Northeastern University

» You can find

General information on the projects conducted in our lab
Research and publications
Research information and contacts of the members

Some useful research links

» Write me emails if you have questions in WCET or RTS
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