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Objectives
 In this chapter, you are supposed to learn:
 What is WCET, and why WCET
 How to obtain the WCET of a program
 Static analysis methods and measurement-based methods
 Practices on WCET analysis of RTOS
 New challenges and future trends on WCET analysis
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An Example of Distributed RTS
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The Need for Timing Validation
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 An Example in Car Industry
 Today, a new car typically contains 80 ECUs
 The car electronic systems are provided by multiple OEMs
 The challenge of integration
 Increasingly complex processors are used

 Related reports show that

Other 
Electronic 
Problems

25%

Timing 
Problems

30%

Other 
Problems

45%

Breakdown Reasons



A Simplest Form of Exe. Time Variation
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Void signal_processing (){
curr_signal = read_signal();
if (curr_signal < threshold){

signal_transformation();    // some +-*/ ops.
}
else{

error_handling_routine();
// complex error handling operations

}
}

In this signal processing task, the real operations performed depends 
on the inputted signals.  Different signals lead to different operations, 
then different execution time.

Almost all real-life programs have variable execution time.



What is WCET?
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Worst-case execution time of a task is NOT response time of a 
task, the latter contains not only execution time, but also the 
durations of preemptions and blockings.



Why WCET Analysis?
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 Hard real-time systems must 
satisfy stringent timing 
constraints; whether the 
constraints are satisfied or not 
should be analyzed at design 
time

 Real-time schedulability test 
requires WCET of each task, 
and an incorrect result leads to 
timing failure

 On the right is an example of 
the result led by incorrectly 
estimated WCET

0 1 2 3 4

T1=(1, 4)

T2=(1, 4)

T3=(2, 4)

Task Set
Schedulable

0 1 2 3 4

Deadline
Missed!



WCET Analysis Quality
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 Safety:
 The estimated upper bound should always enclose the actual 

WCET

 Tightness:
 The estimated upper bound should be as close as possible to 

the actual WCET

 Complexity:
 There is a trade-off between accuracy and analysis complexity
 Analyzers should balance it according to practical requirements

 The trade-off between analysis complexity and the quality 
of results



Why Not Just Measure WCET?
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Start Timing Measurement

Execute Tasks on Target HW

Stop Timing Measurement

TimerLogic Analyzer...

WCET Estimation?



Why Not Just Measure WCET?
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 Why NOT?
 It is intractable to cover all execution traces of a program 

(Think of a program with 10,000 loop iterations and an if-then-
else as the loop body, 210,000 traces)

 Hard to guarantee worst-case data input
 hard to simulate worst-case processor state
 Need real hardware

 BUT
 Measurement-based methods are easy to implement
 Can get a rough estimation of the execution time
 Compliment with other analysis techniques to make the results 

trustworthy



Static Analysis Techniques
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 How it works?
 Given a program executable and the hardware the program is 

running, use mathematical methods to calculate the safe upper 
bound without any simulation

 Pros
 Math theorems guarantee safety
 So mandatory in safe-critical hard real-time systems

 Cons
 Need to build complex mathematical models
 Long analysis time for complex programs



The Ingredients of WCET Analysis
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 Flow Facts
 Flow facts give us information on the control flow of the 

programs, such as infeasible paths and loop counts, etc.
 Automatic flow facts extraction and manual annotation
 How to annotate flow facts in the program



The Ingredients of WCET Analysis
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 The Representation Levels of Programs
Matlab/Simulink – Component-based Design

C/C++/Java – High-Level Language Assembly or Machine Code
Int filtez(int *bpl, int *dlt)
{

int i;
long int zl;
zl = (long)(*bpl++)*(*dlt++);
for (i = 1; i < 6; i++)

zl+=(long)(*bpl++)*(*dlt++);
return ((int) (zl >> 14)); /* x2 here */

}

STMFD   SP!, {LR}
STMFD   SP!, {LR}
STMFD   SP!, {R0-R12}           ;  Push registers
MRS     R4,  CPSR                  ;  Push current CPSR
TST     LR, #1                        ;  called from Thumb mode?
ORRNE   R4,  R4, #0x20         ;  If yes, Set the T-bit
STMFD   SP!, {R4}



Simple Single-
Core Processors

Complex Processors with 
Pipeline and Cache

Multi-core 
Processors

The Ingredients of WCET Analysis
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 The Target Hardware

Hardware is becoming 
more and more 
complex, hard to 
analyze!



Remarks on the Ingredients
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 The Representation Levels of Programs
 Precise timing analysis has to be done after all program 

transformations
 Generally, it is much easier to extract or annotate flow facts in a 

higher representation level
 The flow facts should be mapped from higher level to lower level 

correctly, probably this mapping is done in parallel to code 
transformation

 Hardware in real-time systems are becoming more and 
more complex with features to improve average-case 
performance (throughput), but less predictable, e.g. timing 
anomaly
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A Generic Workflow of Static Analysis
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1 Compile source code into the binary of 
target hardware

2 Reconstruct the Control-Flow Graph 
from the binary

3 Model the HW architecture, calculate 
the execution time of each basic block 
in the CFG

4 Calculate the WCET using some DSE 
tools, e.g. ILP solvers, constraint solvers, 
model checkers

Figure from Chronos@NUS



An Example of the Workflow
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Do micro-arch modeling to get 
the execution time of each BB

Estimated WCET value



What is Path Analysis?
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 Path Analysis
 To identify the execution trace that leads to the longest 

execution time
 To identify infeasible paths of the program
 Path analysis is a “Design Space Exploration” problem

 Popular Techniques
 Tree-based methods (Timing Schema)
 Path-based methods
 Implicit Path Enumeration Technique (IPET)



Timing Schema
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 Represent the program in a syntax tree
 Calculate the WCET of a program by folding the tree



Timing Schema
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 Some General Assumptions
 No recursion
 Explicit function calls
 No “goto”s
 Bounded loop with single entry and single exit

 The Rules



An Example
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An Example (2)
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The Workflow of Timing Schema
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 Decomposition
 Decompose a statement into its primitive components (atomic 

blocks)

 Code Prediction
 Predict the implementation (compiled instructions) of each 

atomic block

 Execution Time of the Atomic Blocks
 Calculate the execution times of the atomic blocks according 

to the execution times of the instructions

 Execution Time of the Statements
 Calculate the execution times of the statements according to 

the execution times of the atomic blocks



An Evaluation of Timing Schema
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 Pros
 Simple method with cheap computation effort
 Scale very well with program size

 Cons
 Cannot deal with generic flexible program structures
 Limited ability on specifying flow facts
 Suffers compiler optimization



Path-Based Methods
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 The upper bound is deter-
mined by: first calculating 
the bounds of all paths, and 
then searching the path 
with longest execution time

 Possible paths are 
represented explicitly



Model Checking
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 Model Checking of WCET is Path Based
 The state space is all the possible program paths
 The model checkers deal with paths explicitly

 Basic Idea
 Construct the CFG of a program as input
 Transform the CFG into the MC model
 Search the path with the longest execution time



CFG Reconstruction – An Example
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Loop entry

Loop Head

Loop Exit

Loop Tail



CFG  Model Checking Model
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The model checker runs an FSM, where each box represents a state in the FSM, and 
the arcs represent the transitions. Labels on arcs specify the transition conditions. 



The Optimization Procedure
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 We can ask the model checker “is it YES or NO that ‘for all 
execution paths starting from the initial state, globally WCET is 
not greater than N“.

 Additional procedures are needed to find the actual value of N

For example,
If the actual WCET is 100, then
TRUE, for N= 100
FALSE, for N= 99



Evaluation of the Path-Based Methods
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 Pros
 Allows simple integration of HW modeling in the analysis 

(expressiveness)
 Guaranteed exact results

 Cons
 Scalability problems (exponential state space)
 If you use model checkers, some unknown performance 

bottlenecks may occur



Implicit Path Enumeration Technique
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 Can obtain exact answer without exhaustive search of all 
the paths

 Hint: the objective is to determine the worst-case 
execution time, not the worst-case execution path

 Idea: finding the worst-case execution time  finding the 
worst-case execution count of each basic block



Implicit Path Enumeration Technique
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 Solutions
 The problem of finding the worst-case execution counts can be 

formulated as an Integer Linear Programming (ILP) problem or 
a constraint programming problem

 The more constraints, the more accurate results



Implicit Path Enumeration Technique
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 Constraints – Restrictions on x-variables
 Structural constraints: extracted directly from the CFG



Implicit Path Enumeration Technique
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 Constraints – Restrictions on x-variables
 Functional constraints:  telling how the program works, e.g. 

how many times a loop iterates



An Example of ILP Formulation
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BB0

BB1

BB2 BB3

BB7

BB4 BB5

BB6

5

Sta

11

1 3

5

7 5

7 8

4



An Evaluation of IPET
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 Pros
 Allows to consider complex flow facts
 Generation of constraints is simple and direct
 Efficient tools

 Cons
 Solving ILP is generally NP-hard (luckily, the WCET problem 

can be reduced to network flow problem, which requires less 
solving time)

 Still difficult to encode the flow facts that specify execution 
ordering
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Micro-Architecture Analysis
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 Why Micro-Architecture Analysis?
 The execution time depends not only on the program itself, 

but also on the hardware where the program executes
 Modern processors have lots of complex features that can 

result in unpredictable execution time variation, which is very 
hard to analyze

 Timing Anomaly

 What Are Included in Micro-Architecture Analysis?
 Cache analysis
 Pipeline analysis (multiple issue, out-of-order pipelines)
 Branch prediction and speculative execution
 …… 



Cache in a Nutshell
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 Why Cache?
 The “memory wall”



Cache in a Nutshell
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 Why Cache?
 Cost-speed trade-off
 Program temporal/spatial locality
 Memory hierarchy



Cache in a Nutshell
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 Types of Caches
 L1 Instruction Cache (32KB)
 L1 Data Cache (32KB)
 L2/L3 Unified Cache (512KB ~ 6MB)
 Shared cache in multicores

 Associativity
 Cache are organized in terms of “cache lines”
 Associativity specifies how the cache lines are organized and 

how to map a memory block into the cache
 Direct-mapped
 Full-associative
 Set-associative



Cache in a Nutshell
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 Direct-mapped Cache

i = x % n;

Easy to implement

Fast scan

But high miss ratio!



Cache in a Nutshell
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 Full-associative Cache

A memory block can be mapped 
to any cache line if not occupied

Efficient use of the cache

But notorious scan and 
replacement overhead!



Cache in a Nutshell
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 Set-associative Cache

i = (x % #sets) + A  (0≤A≤set size)

A clever trade-off between direct-mapped 
caches and full-associative caches

Much less overhead than FA, but still harder to 
analyze than DM

Good news to GP-architecture guys, but not so 
good to Real-Time guys



Cache in a Nutshell
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 Replacement Policy
 If cache miss occurs, kick out which cache line?
 Round-robin, LRU, pseudo-LRU
 Different cache replace policies have different predictability

 Write Policy
 Write-through: whenever there is a write to the cache content, 

the data is immediately written to the corresponding main 
memory address, regardless of hits or misses

 Write-back: only write dirty cache data to main memory when 
the cache block is replaced, requires special bits in cache to tag 
dirty data



Cache Analysis in WCET Analysis
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 Without cache analysis
 In each BB, all memory accesses take fixed cycles, no variation
 The execution time of a BB is not affected by the execution 

history
 When there is cache, all the situations are different

 Analysis of different types of caches
 I-cache with different replacement policy
 I-cache or D-cache?
 Single-level or multi-level?
 Dedicated cache or shared cache?



Cache Analysis in the IPET Framework
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 Idea
 Model new constraints related to cache behavior into the 

original ILP problem
 No fundamental changes to the structure of the ILP problem

 How to?
 For each instruction, determine

 Cache hit execution counts, time
 Cache miss execution counts, time
  go into the basic blocks



Line Blocks
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 The objective cache analysis is to determine how many 
misses and hits in each BB  analyze conflicting memory 
blocks



Modified ILP Formulation
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New Cache Constraints
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Cache Conflict Graph (CCG)
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Generating Constraints from CCG
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Tightening the Constraints
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 Assumptions for the Example
 Each BB is mapped to a single cache line
 BB1 conflicts with BB6, BB4 conflicts with BB5

p(4.1, 5.1) = 0



Tightening the Constraints
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x3 = 10·x1

x7 = 10·x5

x4 = 9·x1

We already know:

But this needs to be tightened:



Inter-Procedure Calls
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 d1 = 1, x1 = d1 = f1, x2 = f1 = f2, d2.f1 = f1
 x3.f1 = d2.f1 = d3.f1, d2.f2 = f2
 x3.f2 = d2.f2 = d3.f2, x3 = x3.f1 + x3.f2
 Xhit3.1 = p(3.1.f1, 3.1.f2)



Direct-Mapped  Set-Associative

2009/3/9Chapter 2: WCET Analysis58

 What’s the Difference?
 Since conflicting domains are set-associative sets, there are 

more potential conflicts to be analyzed
 Cache replacement policy affects analysis

 What to do?
 We need to maintain cache states

 CCG  CSTG (a more concrete form of CCG)
 Cost function is unchanged, but cache constraints are different 

now

∑= −
n

i im
m

0 )!(
!



Cache State Transition Graph
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New Cache Constraints
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1 The execution count of Bm,n = the sum of inflow with Bm,n in the right most line entry

2 For each node, sum of inflow = sum of outflow

3 Starting condition

4 Cache hit lower bound:



Data Cache Analysis
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 Two sub-problems
 Determine load/store addresses
 Model worst case data cache hit/miss counts

 Difficulties
 L/S addresses may be ambiguous or may change, usually 

dynamic data structures are banned for static analysis
 Data flow analysis is required

 Solutions
 Extend cost functions to include data cache miss penalties
 Use linear constraints to solve address ambiguity problems



Two-Level Analysis
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 Data flow analysis
 To determine the absolute data addresses of LD/ST 

instructions
 Very difficult, but algorithms already established

 Data cache conflict analysis
 Given the results of data flow analysis, construct a data cache 

conflict graph, and use ILP techniques to bound the data cache 
hit and miss counts

 Cinderella works on the second sub-problem



Modified Cost Functions
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Data Cache Conflict Graph
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 Idea
 By data flow analysis, we can identify a set of possible data 

addresses accessed by LD/ST instr.

 Different LD/ST instructions that access the addresses in the 
same data cache set may leads to data cache miss

 Similar to I-cache analysis, use data cache conflict graph to 
capture the control flow of LD/ST instructions to analyze 
potential data hits and misses



Data Cache Conflict Graph
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Assume data cache is direct-mapped, and each cache 
line has 4 bytes

Data address rage [0x100, 0x124] span 10 data cache 
lines

Take the set at 0x100 for example, see the graph on the 
left



New Constraints
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 In D-CCG, sum of inflow = sum of outflow

 The bounds on the execution counts of each LD/ST 
instruction instance

 Hit and miss relation
 LD-incurred cache miss is similar to instruction cache
 ST-incurred cache miss depends on write policies: write 

through or write back, with/without write allocate



An Evaluation of the Above Analysis
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 Pros
 An elegant way to integrate hardware modeling into WCET 

calculation

 Cons
 The number of ILP constraints grows greatly, because the CCG 

is a fine-grained representation of cache states
 So the time to solve the ILP problem may be very long, not 

feasible for real-life programs

 Solutions
 Try some other methods that can do cache analysis in a more 

coarse-grained way by sacrificing some precision



Timing Anomaly
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 Counterintuitive Behaviors



Timing Anomaly
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 A Formal Definition
 ∆t – Latency variations of several instructions S’ (the whole 

instruction sequence is S)
 ∆C – execution time change of the whole instruction sequence

 As long as one of the following conditions hold, we say 
that a timing anomaly occurs
 ∆t > 0  ∆C < 0
 ∆t < 0  ∆C > 0
 ∆t > 0  ∆C > ∆t
 ∆t < 0  ∆C < ∆t



Domino Effect
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Possible Solutions

2009/3/9Chapter 2: WCET Analysis71

 Occurrence of timing anomalies depends on both 
hardware features and code structure

 How to eliminate timing anomalies?
 De-active caches
 Use synchronization points
 Choose more predictable hardware platform
 Code reordering
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A Review of Problems of Static Analysis
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 Problems of Static Analysis
 Computation efforts exerted to cover all possible situations 

possible scalability problems
 Hard to conduct micro-architecture models
 Micro-arch analysis of complex hardware may encounter 

scalability problems

 So Measurement-Based Methods
 What can we benefit from it?
 How to do measurement-based analysis?
 What are the technical issues?



Measurement-Based Methods
– The Big Picture
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Tool Architecture
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Issues in Measurement-Based Methods
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 How to measure?
 Measurement tools: HW, SW
 End-to-end, or just measure code segments?

 How to cover more execution traces?
 Due to worst-case input
 Due to worst-case hardware states
 Path/Trace coverage

 What do the results reveal?
 Single WCET value, or a ET distribution?
 This issue equals “what’s the use of measurement-based 

methods?”



How to Measure?
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 End-to-end or measuring code segments?
 End-to-end is easy, but inaccurate, intractable
 Measurement of code segments + Calculation

 How to Measure?
 Software instrumentation

 Put time recording in the analyzed codes
 Accuracy?

 Hardware instrumentation
 Logic Analyzers, oscilloscopes, …



Hardware Instrumentation
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Execution Time Measurement Framework
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Instrumentation Methods
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 Requirements
 Instrumentations (IPs) may not alter program flow or 

execution time in an unknown or unpredictable way. IPs have 
to be persistent if changing either.

 Execution always starts with the same (known) state (cache, 
pipeline, branch prediction, ...)

 Design Decisions
 Control flow manipulation? Input data generation?
 Number of measurement runs?
 Resource consumption?
 Required devices?
 Installation effort?



The Steps of Measurement-Based Analysis
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1. Static analysis: reconstruct CFG from the code
2. Program partitioning
3. Test data generation
4. Execution time instrumentation
5. WCET calculation

 This is only one exemplary workflow, other measurement-
based methods may have different workflow



Program Partitioning
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 What is a program segment?
 Roughly a sub-graph of the CFG

 Why program partitioning?
 Reduce problem state space  reduce 

analysis efforts
 Precision is sacrificed

 Partitioning granularity
 Fewer segments  less instrumentation 

efforts but higher analysis computation 
overhead

 “Good” partitioning
 Balance “the # of program segments” and 

“the average # of paths per segment”



Program Partitioning
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 An Example of Program Partitioning



Test Data Generation
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 What is the so-called “test data”?
 Roughly, the values of a set of variables that leads to one of the 

paths of a program segment

 What is the use of “test data”?
 Put code instrumentations at the segment boundaries, and set 

the test data to some specific values, which can leads the 
program to the desired path

 How to obtain “test data”? – model checking



Test Data Generation
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Test Data Generation
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 Execution Time Measurement
 Use software instrumentation to guide the program
 Use hardware instrumentation to measure execution time

 Enforcing Predictable Hardware States
 Challenge: on complex hardware where the instruction 

timing depends on the execution history
 Code instrumentations can be used to enforce an a-priori 

known state at the beginning of a program segment, thus 
avoiding the need for considering the execution history

 WCET Calculation
 Use ILP, Model Checking, or any optimization tools to do 

longest path search



Probabilistic WCET Analysis
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 What is probabilistic WCET analysis?
 It gives you a distribution of the execution time of a program, 

instead of single WCET value

 Why probabilistic WCET analysis?
 To determine the probability distribution of the execution 

times of tasks, then used to do probabilistic schedulability 
analysis in soft real-time systems

 Helping to detect the “WCET hotspot”, used for WCET 
reduction

 Helping to analyze the execution behaviors of a program



Probabilistic WCET Analysis
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 Solution: Probabilistic Timing Schema
 Timing Schema

 W(A) = exec time A
 W(A;B) = W(A)+W(B)
 W(if E then A else B) = W(E) + max(W(A), W(B))

 Probabilistic Timing Schema
 Sequential execution: Z = X + Y
 Distribution functions: F(x) = P[X ≤ x], G(y) = P[Y ≤ y]
 To compute H(z) = P[X + Y ≤ z]
 If X and Y are independent
 If joint distribution between X and Y is given as J(x, y)
 If the joint distribution is unknown



Probabilistic WCET Analysis
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 Probabilistic Timing Schema
 Conditional execution: Z = max(X, Y)
 Z = E + max(X, Y), max(X, Y) has the distribution H(z)

 Iteration: can be analyzed as a combination of sequence execution and 
conditional execution, loop bounds should be known

 Determining Probability Distributions
 To determine the actual distribution of the execution times of 

individual units (basic blocks)
 Run the units under a large number of test scenarios



The pWCET Analysis Tool
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Obtaining execution traces.  This is done by manually or automatically 
inserting instrumentation calls into the source code, or by automatically 
adding instrumentation codes into the compiled assembly code

In this step, the CFG of the assembly code is 
reconstructed, and then converted into a syntax tree

Compute the distribution functions of each node from the traces;
Determine the joint distribution function of pairs of nodes;
Loop identification, loop iteration extracted;
This step is VERY computation expensive!!

Generate a program for WCET calculation, this is based on 
separating the timing analysis into a program generation part and 
an execution part.
The generator traverses the tree in reversed order and applies 
the timing schema rules, and the results is a set of commands on 
how to compute the timing program for the given tree.

Run the generated program with the program to 
be analyzed, and calculate the probabilistic 
distribution of the execution times of the program.



RapiTime Exemplary Results Report
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A Survey of WCET Tools
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A Survey of WCET Tools

2009/3/9Chapter 2: WCET Analysis93

 Support of Architectural Features
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Introduction of This Research Topic
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 Real-Life Real-Time Systems are Composed of
 RTOS
 Applications

 Timing Correctness of a Real-Time System is guaranteed 
by
 Schedulability analysis in the high level
 WCET analysis in the low level

 Applying WCET tools for application programs to RTOS
 Poor results are reported (up to 86% pessimism)
 Hard to handle some RTOS specific programs

 Additional analysis techniques are required!



WCET Analysis of RTEMS
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 Research Group
 Antoine Colin & Isabelle Puaut @ IRISA

 Experiment Setup
 WCET tool: Heptane (tree-based)
 RTOS: RTEMS
 Manual revision to codes
 12 out of 85 system calls, span across 91 files, 14,532 LOC



WCET Analysis of RTEMS
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 Problem 1: unstructured control flow
 Such as goto statements, multiple loop exits, …
 Because Heptane is a tree-based WCET analysis tool
 Consequences: (1) rewriting the codes; (2) only a small subset 

of RTEMS system calls are analyzed

 Problem 2: Dynamic function calls implemented through 
function pointers
 Real called functions are determined at runtime
 Solutions: replace them with static ones



WCET Analysis of RTEMS
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 Problem 3: Hard to determine loop bounds since the 
loop bounds are related to dynamic runtime behaviors
 Task queue, message queue manipulation
 Solution: Manually bound loops by an investigation of RTOS 

codes

 Problem 4: Blocking system calls
 Problem 5: Context switch overhead

 Putting them all together, an average of 86% pessimism in 
the estimated results is reported



Predictable Architecture Design @ TuWein
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 Challenges to WCET Analysis – Side Effects
 It is apparent that the state space can be reduced via 

composable or hierarchical design/analysis
 Side effects are defined as task interactions that cannot be 

traced back to task interface. For example, the shared cache 
may enable task A to influence the execution time of task B by 
displacing B’s data in the shared region.

 Side effects are a big problem to composable timing analysis



Predictable Architecture Design @ TuWein
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 Side Effects in Simple Hardware Architectures
 Variable program execution time due to

 Unpredictable data input
 Instructions with variable execution cycles dependent on operands

 In Complex Hardware Architectures
 Different task instances may have different execution time
 Scheduling without preemption: task instances from different 

tasks may execute alternatively, creating complex hardware 
states which are hard to predict

 Scheduling with preemption: HW states change at preemption 
points, hard to predict when preemption will happen

 Modern complex pipelines  flush not practical
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 Side Effects in Multicore Processors
 Shared cache: if two tasks on two different cores share the 

same cache lines, it is hard to bound the effects of mutual 
replacement of cache contents

 Other shared resources have similar problems
 Simultaneous Multi-Threading (SMT): also called hyper-

threading by Intel, multiple tasks on the same core share the 
function units at instruction level, hard to analyze the execution 
time of each task with good precision
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 Solutions
 The basic philosophy of Puschner’s solutions is to try every 

possibility to AVOID unwanted interactions
 (1)  The use of single-path code in all tasks
 (2)  The execution of a single task/thread per core
 (3)  The use of simple in-order pipelines
 (4)  Statically scheduled access to shared memory in CMPs

 The solutions require redesign in both hardware and software 
(at both system level and application level)
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 An RTOS for a Time-Predictable Computing Node
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 Requirements on Hardware Architectures
 The execution times of instructions are independent of the 

operand values
 The CPU support a conditional move instruction having 

invariable execution times
 Direct-mapped or set-associative caches with LRU
 Memory access times are invariable for all data items
 The CPU has a programmable instruction counter that can 

generate an interrupt when a given number of instructions has 
been completed
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 The SW Architecture – Task Model
 Simple Task Model

 I/O operations will never block a task
 No statements for explicit I/O or synchronization within a task
 All inputs are ready at task startup
 Outputs are ready in the output variables when the task completes

 Single-path Tasks
 Transformation techniques
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 Single-Path Transformation
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 The SW Architecture – RTOS
 There must be no jitter in the execution times of the RTOS 

routines
 Kernel designed using the single-path techniques
 Communications:  messages are scheduled at fixed time off-line

1 Local buffer accessed by tasks
2 Global buffer managed by IPC
3 Inter-node communication
4 Message schedule defined off-line
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 The SW Architecture – RTOS
 Scheduler

 Time-triggered
 Schedule is determined off-line
 Scheduler invoked at each global clock tick
 Mode-switch is implemented by schedule switch, also determined off-

line
 Tasks are divided into “initialization phase” and “real-time phase”, the 

former is non-real-time, the latter is managed by the RTOS
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 An Example
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 Evaluations
 Puschner has posed insights on design for predictability
 Single-path technique is too costly and rigid
 Requiring both specialized hardware and software (RTOS) may 

be impractical
 In all, the ultimate predictability is achieved at the cost of 

system flexibility
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 Schneider studied combined schedulability & WCET 
analysis in his Ph.D. thesis, issues discussed in his work 
include
 The quality of WCET analysis of RTOS can be improved by 

considering both the applications and the RTOS
 In real-life multitasking real-time systems, tasks are executed in 

an interleaving manner (interruptions), but this is not 
considered in traditional WCET analysis, under such a 
circumstance, both scheduling and WCET must be re-think
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 Why Combined Schedulability & WCET Analysis?
 Traditional schedulability and WCET analysis are performed in 

a hierarchical manner where the WCETs of the tasks are 
calculated first, then the results are fed to schedulability 
analysis

 It is implied that even a task is interrupted, the WCET of all its 
segments equals the WCET of the task without interruptions

 In multi-tasking systems running on complex hardware,  the 
assumptions for hierarchical analysis is invalidated
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 Why the assumption is invalidated?
 As we have discussed in previous slides, the WCET of a 

program highly depends on the processor states in presence of 
complex hardware

 If a program is interrupted during execution, when it resumes, 
the hardware state is not identical to that at the interruption 
point, the influences are complex:
 Some needed cache contents are swapped out, so the WCET in 

presence of interruption is larger than that without interruption
 If timing anomaly occurs, the displacement of cache contents may 

leads to a smaller WCET
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 How to deal with these problems?
 Consider the scheduling behavior within the WCET analysis 

process, and capture the state change at the interruption 
points

 Re-calculate the WCET by considering the state change
 Re-do schedulability analysis with new WCET values
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 The Old and New Analysis Framework
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 Problem 1: Irreducible program structures
 Solution: choose a proper WCET tool

 Problem 2: Lack of application information greatly affects 
analyzability and the precision of the results
 Bounding loops
 Dynamic function calls and blocking system calls
 System call context and RTOS working mode
 Solution: extract helpful information from applications

 Problem 3: multi-tasking
 Solution: develop analysis techniques that can safely bound the 

effects of task switching
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 Does Single WCET Value Suffice?
 The running of RTOS is mode-based, so a single WCET value 

regardless of execution mode is not sensible
 Related techniques, such as parametric ILP should be 

developed

 Considering Both Applications and RTOS
 Application information may be very useful to RTOS analysis, 

e.g. bounding loops
 What kinds of application information should be 

communicated to the analyzer?
 How can these information be communicated to the analyzer?
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 Combined Schedulability and WCET Analysis
 There is a mutual communication between schedulability 

analysis and WCET analysis
 Control of the state space explosion

 Raising the Degree of Automation
 Almost all related research practices reported low degree of 

automation in the analysis
 WCET tool designers must always keep the issue of 

“automation” in mind when designing tools
 The degree of automation is the largest factor that affects the 

usability of a WCET tool



Challenges on WCET Analysis of RTOS

2009/3/9Chapter 2: WCET Analysis120

 Managing Analysis Complexity in the Multicore Era
 Problem: fine-grained access to shared resources (L2 cache, 

on-chip bus, …), and for most existing architectures, we have 
very limited ability to control the behavior of these shared 
resources

 Solution: Performance isolation techniques (cache partitioning), 
since such techniques can “create” an isolated environment for 
each core, and at the same time still maintains the flexibility 
that shared resources provide with
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 To Design or to Analyze?
 Analyze

 No need to change existing hardware or system; analysis must be 
done if you’re to analyze fabricated systems

 But lots of hardware features or management policies are not 
designed for real-time, these features make the analysis very hard

 To guarantee predictability on unpredictable hardware, a lot of 
pessimism is introduced into the results  system over design

 Design
 To design hardware or software with the consideration of real-time 

from scratch can yield very predictable systems
 Predictability is achieved by sacrificing flexibility
 New hardware requires re-design of the system, from hardware, to 

programming tools, to OS and applications
 A Graceful Balance!
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Partitioning is used to avoid inter-task interference regardless of single- or multi-core. 
Locking is used to enforce predictability in terms of cache hits/misses
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 More software control
 Software-controlled cache locking
 Scratchpad memory
 More predictable caches or pipelines

 Multi-core processors
 + multiple simple cores
 - Shared cache  inter-task interference
 - Share whatever, on-chip buses or networks

 Execution Behavior
 Traditionally, researchers assume single task execute on single 

core, but this is not necessarily the whole story
 A big gap between WCET and ACET
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 Levels of Abstraction
 Traditionally C code or assembly code
 A trend towards higher-level abstraction, e.g. OO languages, 

model-based design
 More dynamic control structure, hard to reconstruct CFG
 more dynamic data structure, memory access
 Java VM, JIT compilation

 Component-based design 
 FSM synthesize highly unstructured code
 Parameterized execution time/WCET
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 WCET-aware Compilation
 Try to tackle the analysis complexity problem in compilers
 Develop compilers that can generate predictable codes

 Raise Automation Level
 Automatic extraction of flow facts, less user intervention
 Flow facts mapping across different representation levels

 Parametric WCET Analysis
 Obtain a function for WCET results, instead of a single WCET 

value

 Integrate WCET analysis with power-aware techniques
 Integrate WCET analysis with scheduling analysis
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Embedded Computing Sys., 7(3):1–53, 2008.
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 Jan Gustafsson, et al. ALL-TIMES – a European Project on Integrating Timing Technology. 2008.

 Static Analysis
 Xianfeng Li, et al. Chronos: A Timing Analyzer for Embedded Software. 2006.

 Yau-Tsun Steven Li, et al. Cinderella: A Retargetable Environment for Performance Analysis of Real-Time Software. 
In EuroPar 1997.

 Yau-Tsun Steven Li, et al. Performance Analysis of Embedded Software Using Implicit Path Enumeration. In DAC 
1995.

 Yau-Tsun Steven Li, et al. Performance Estimation of Embedded Software with Instruction Cache Modeling. 1999.

 Yau-Tsun Steven Li, et al. Cache Modeling for Real-Time Software: Beyond Directed-Mapped Instruction Caches. 
1996.

 Mingsong Lv, et al. Performance Comparison of Techniques on Static Path Analysis of WCET. In EUC 2008.

 T. Lundqvist and P. Stenstrom. Timing Anomalies in Dynamically Scheduled Microprocessors. In RTSS 1999.

 J. Reineke, et al. A Definition and Classification of Timing Anomalies. In WCET 2006.

 Measurement-Based Analysis
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 Tools & Projects
 ALL-Times: http://www.mrtc.mdh.se/projects/all-times/

 aiT:  www.ait.com

 Bound-T: www.tidorum.fi/bound-t/

 RapiTime:  www.rapitasystems.com

 SymTA/P: 

 Heptane: http://www.irisa.fr/aces/work/heptane-demo/heptane.html
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 The Website of Real-Time Embedded Systems Laboratory, 
Northeastern University
 http://www.neu-rtes.org
 http://www.neu-rtes.org/courses/spring2009/

 You can find
 General information on the projects conducted in our lab
 Research and publications
 Research information and contacts of the members
 Some useful research links

 Write me emails if you have questions in WCET or RTS
 mingsong@research.neu.edu.cn
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