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Objectives

» In this chapter, you are supposed to learn:

What are the major problems of resource sharing in real-time
systems

What are the basic ideas to resolve the problems
How does PIP work?

How does PCP work?
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Contents

» Resource Sharing Problems
4
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Resource Sharing Model

Examples of common resources: data structures, variables,

main memory area, file, set of registers, 1/O unit, ... .

Many shared resources do not allow simultaneous accesses

but require mutual exclusion (exclusive resources). A

piece of code executed under mutual exclusion constraints is

called a critical section.
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Resource Sharing Model

A task waiting for an exclusive resource is said to be blocked
on that resource. Otherwise, it proceeds by entering the
critical section and holds the resource. When a task |leaves
a critical section, the associated resource becomes free.

Waiting state caused by resource constraints:

dispatching

activation termination
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Resource Sharing Model

Each exclusive resource R; must be protected by a
different semaphore S; and each critical section operating
on a resource must begin with a wait(S;) primitive and end
with a signal(S;) primitive.

All tasks blocked on the same resource are kept in a queue
associated with the semaphore. When a running task
executes a wait on a locked semaphore, it enters a
waiting state, until another tasks executes a signal
primitive that unlocks the semaphore.
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Resource Sharing in GPOS

» Resource Sharing Issues in GPOS

Data Consistency
Semaphores and Monitors are used to guarantee data consistency
Deadlock

Deadlock prevention methods (Resource ordering)
Deadlock breaking methods

» Incapability of Policies in GPOS
Only logical results are taken into consideration
No bounded time on resource accessing
lgnorant of priorities of tasks

Un-predictable blocking behaviors
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Priority Inversion

» Preemption * Priority-Based — Priority Inversion

Task J1 Applies for R J1 Releases R
Normal Execution
J1 N 0N : Accessing Shared
""" — Resources
J2 J3 ‘ J3 Releases R
+ Applies for R
J3 [ e

------------- »
0 2 13t \\ 9 Time

T T T Direct prlorlty inversion

J3 Arrives  J1Arrives J2 Arrives . .
Indirect uncontrollable priority inversion
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Deadlock Still Exists

J1

J1

J1 Arrives  J1 requests R

(@) In preemption mode

Deadlock occurs

>
J2 Arrives J2 requests R Deadlock Occurs
J1 Arrives J1 requests R J1 completes
(b) In non-preemption mode
No deadlock occurs

*

J2 Arrives

*

J2 requests R J2 completes
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» Resource Access Policies

Non-Preemptive Protocol (NPP)
Highest Locker Priority (HLP)
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Resource Access Control

» Under Fixed Priorities

Non-Preemptive Protocol (NPP)
Highest Locker Priority (HLP)

Priority Inheritance Protocol (PIP)
Priority Ceiling Protocol (PCP)

» Under Dynamic Priorities
Stack Resource Policy (SRP)
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Non-Preemptive Protocol

» Basic Idea: Preemption is forbidden in critical sections

» Implementation: when a task enters a CS, its priority is
raised to the highest value

» Advantage: simplicity

» Problems: High priority tasks that do not use CS may also
block
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Non-Preemptive Protocol

» With Preemption in CS

priority B

A
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Non-Preemptive Protocol

» Without Preemption in CS

priority
A A
Ty _ | e
A
T, 1

T, A

PCS = lnaX{Pl, e Pn}
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Problems with NPP

priority

A

T

useless

i blocking

vy B

T, cannot preemt, although it could

Chapter 6: Resource Sharing in Real-Time Systems

2009/3/30






Schedule with HLP

priority
A

Prs = max {P, | 1, uses CS}

T, 1s blocked, but t, can preempt within a CS
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Problems with HLP

T, blocks just i case ...

13 ' .
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» Resource Access Policies

Priority Inheritance Protocol (PIP)

19 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30



Priority Inheritance Protocol (PIP)

» Basic Idea:When a task Ji blocks one or more higher priority
tasks, it temporarily assumes (inherits) the highest priority of
the blocked tasks.When | exits the critical section, it must
resume the priority it had when entering the CS

» Priority inheritance is transitive. For instance, suppose ]|, J, and
J; are assigned priority in descending order; if J; blocks J,,and J,
blocks |,, then J; will inherit the priority of |,

» A job | can preempt another job ], is job ] is not blocked and
its priority is higher than the priority, inherited or assigned, at
which job ], is executing
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Schedule with PIP

priority A task blocks on a

A / direct blocking locked semaphore
3

| push -through blocking
A / | A task blocks because a

lower priority task
inherits a higher priority
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Properties of PIP

» Property |: A task can be blocked at most once by each
lower priority task

» Property 2: A task can be blocked at most once by each
semaphore it accesses

» If n is the number of lower priority tasks of t,and m is
the number of semaphores that t; can be blocked, then t.
can be blocked at most for the duration of min(n, m)
critical sections
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PIP Properties — An Example

priority

7. I A s I cl D]
G N A
L 2 [ o N

e 1, Can be blocked once by 1, (on A, or C,) and
once by t; (on B; or D)

e T, Can be blocked once by 1, (on B; or D,)

e T, cannot be blocked
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Problem 1: Chained Blocking

24

S

B,

P

B3
b

priority
A
T
Ty
A
13
T i

Theorem: 1, can be blocked at most once
by each lower priority task
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Problem 2: Deadlock still .

J1 Arrives J1 locks R2

J1

” s

£ X1sts

+ + +J1 requests R1, blocked

Deadlock!

b \

J2 Arrives J2 locks R1 J2 requests R2 (nested)
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Priority Ceiling Protocol (PCP)

4

The goal of PCP protocol is to avoid deadlock and chained
blocking

Basic |dea: To ensure that when a job | preempts the critical
section of another job and executes its own critical section z,
the priority at which z will executes is guaranteed to be higher
than the inherited priorities of all the preempted critical
sections.

The idea is realized by firstly assigning a priority to each
semaphore, which is equal to the highest priority task that may
use this semaphore.A job ] can start its execution in critical
section only if J’s priority is higher than all priority ceilings of
all the semaphores locked by jobs other than |.
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Schedule with PCP

W s; C(s) =P,
priority s, C(sy) =P

‘Tl h_-—-
T2 h
T

t,: T, 1s blocked by the PCP, smce P, < C(s,)
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Avoiding Deadlock by PCP

» An Example

Task properties
Jo={.., PSy), ... V(Sy), ..}
) =L PS)s o s PSy), . V(Sy), . V(S)), ...}
J, = {0 P, s P(S))s o a V(S)), - V(Sy), .. )

Priority ceilings of semaphores
P, = max {P,} = P,
s = max {P,,P,} = P,
P, = max {P,,P,} = P,
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Avoiding Deadlock by PCP

S, locked Sy unlocked
10 S

Attempts to lock S;
Blocked by J2 Sz locked s, unlocked

* S; locked S; unlocked
J1
S, locked S locked
2 [OCKE S; locked 1 unfocke S, unlocked
J2
|
| 1] 1] | [ dime
tO tl tz t3 t4 t5 t6 t7 tg
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Avoiding Chained Blocking by PCP

» Assume ], access S, and S,, ], accesses S, and 5 accesses S,
» According to PCF P5; = Pg, = P,

J1 attempts to lock R1
Blocked by J3
J1
J2
J2 attempts to locks
R2, blocked by J3
J3

+ +

J3 locks R1 J3 unlocks R1
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Properties of PCP

» Property |: PCP can avoid deadlock
» Property 2: Blocking is reduced to only one CS

» PCP protocol has the “at-most-once” property, which is
highly desired in timing analysis

» Problem: PCP is not transparent to programmers -
semaphores needs manual ceiling (review PIP, inheritance
can be done without user intervention)
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» Resource Access Policies

» Schedulability Test under PCP
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RM Schedulability Test Extended

» A set of n periodic tasks using PCP can be scheduled by RM
algorithms if the following conditions are satisfied

. . c, Ci Bi _ ...
{ { — —_— ERC ) — ——<: 2‘!'—1
Vi, 1 <i <n, T1+Tz+ +],_E T,-—’( )

» A set of n periodic tasks using PCP protocol can be scheduled
by RM algorithm if the following condition is satisfied

C, Ch (Bl Bn—l) I
— 4+t —d+max { —, -, . Enzfﬂ'_l
Tl Tn Tl Tn—l ( )

» A set of n periodic tasks using PCP can be scheduled by RM
algorithm for all task phasing if

Vi, 1 <i <n,

) Tj (T C; B;
— | —— —_— <
(kl,l})lgﬂa [;Z—I: U"IT;: [T;.I +IT¢ +1Tg-] <1
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Recommended Readings

l. Jane W.S. Liu, Real-Time Systems, 2002.
2. Liu Sha, R. Rajkumar and J.P. Lehoczky, Priority Inheritance Protocols an approach to real-time synchronization.
3. Priority inversion why you care and what to do about it.

4. N.Audsley and A. Burns, Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling.
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Visit Our Website

» The Website of Real-Time Embedded Systems Laboratory,
Northeastern University

» You can find

General information on the projects conducted in our lab
Research and publications
Research information and contacts of the members

Some useful research links

» Write me emails if you have questions in RTS
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