Spring 2009 - Real-Time Systems

Chapter 6
Resource Sharing
In Real-Time Systems

http://www.neu-rtes.org/�
http://www.neu.edu.cn/�
http://www.neu-rtes.org/courses/spring2009/�

Objectives

» In this chapter, you are supposed to learn:

What are the major problems of resource sharing in real-time
systems

What are the basic ideas to resolve the problems
How does PIP work?

How does PCP work?

2 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Contents

» Resource Sharing Problems
4

3 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Resource Sharing Model

Examples of common resources: data structures, variables,

main memory area, file, set of registers, 1/O unit,

Many shared resources do not allow simultaneous accesses

but require mutual exclusion (exclusive resources). A

piece of code executed under mutual exclusion constraints is

called a critical section.
J

wall(s)

critical

signal(s)

[T

shared
resource

S
J

section |]

R

wait(s)

critical
section

signal(s)

4 Chapter 6: Resource Sharing in Real-Time Systems

2009/3/30

Resource Sharing Model

A task waiting for an exclusive resource is said to be blocked
on that resource. Otherwise, it proceeds by entering the
critical section and holds the resource. When a task |leaves
a critical section, the associated resource becomes free.

Waiting state caused by resource constraints:

dispatching

activation termination

5 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Resource Sharing Model

Each exclusive resource R; must be protected by a
different semaphore S; and each critical section operating
on a resource must begin with a wait(S;) primitive and end
with a signal(S;) primitive.

All tasks blocked on the same resource are kept in a queue
associated with the semaphore. When a running task
executes a wait on a locked semaphore, it enters a
waiting state, until another tasks executes a signal
primitive that unlocks the semaphore.

6 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Resource Sharing in GPOS

» Resource Sharing Issues in GPOS

Data Consistency
Semaphores and Monitors are used to guarantee data consistency
Deadlock

Deadlock prevention methods (Resource ordering)
Deadlock breaking methods

» Incapability of Policies in GPOS
Only logical results are taken into consideration
No bounded time on resource accessing
lgnorant of priorities of tasks

Un-predictable blocking behaviors

7 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Priority Inversion

» Preemption * Priority-Based — Priority Inversion

Task J1 Applies for R J1 Releases R
Normal Execution
J1 N 0N : Accessing Shared
""" — Resources
J2 J3 ‘ J3 Releases R
+ Applies for R
J3 [e

------------- »
0 2 13t \\ 9 Time

T T T Direct prlorlty inversion

J3 Arrives J1Arrives J2 Arrives . .
Indirect uncontrollable priority inversion

8 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Deadlock Still Exists

J1

J1

J1 Arrives J1 requests R

(@) In preemption mode

Deadlock occurs

>
J2 Arrives J2 requests R Deadlock Occurs
J1 Arrives J1 requests R J1 completes
(b) In non-preemption mode
No deadlock occurs

*

J2 Arrives

*

J2 requests R J2 completes

Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Contents

4

» Resource Access Policies

Non-Preemptive Protocol (NPP)
Highest Locker Priority (HLP)

10 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Resource Access Control

» Under Fixed Priorities

Non-Preemptive Protocol (NPP)
Highest Locker Priority (HLP)

Priority Inheritance Protocol (PIP)
Priority Ceiling Protocol (PCP)

» Under Dynamic Priorities
Stack Resource Policy (SRP)

I Chapter 6: Resource Sharing in Real-Time Systems

2009/3/30

Non-Preemptive Protocol

» Basic Idea: Preemption is forbidden in critical sections

» Implementation: when a task enters a CS, its priority is
raised to the highest value

» Advantage: simplicity

» Problems: High priority tasks that do not use CS may also
block

12 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Non-Preemptive Protocol

» With Preemption in CS

priority B

A

Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Non-Preemptive Protocol

» Without Preemption in CS

priority
A A
Ty _ | e
A
T, 1

T, A

PCS = lnaX{Pl, e Pn}

14 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Problems with NPP

priority

A

T

useless

i blocking

vy B

T, cannot preemt, although it could

Chapter 6: Resource Sharing in Real-Time Systems

2009/3/30

Schedule with HLP

priority
A

Prs = max {P, | 1, uses CS}

T, 1s blocked, but t, can preempt within a CS

|7 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Problems with HLP

T, blocks just i case ...

13 ' .

18 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Contents

4

» Resource Access Policies

Priority Inheritance Protocol (PIP)

19 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Priority Inheritance Protocol (PIP)

» Basic Idea:When a task Ji blocks one or more higher priority
tasks, it temporarily assumes (inherits) the highest priority of
the blocked tasks.When | exits the critical section, it must
resume the priority it had when entering the CS

» Priority inheritance is transitive. For instance, suppose]|, J, and
J; are assigned priority in descending order; if J; blocks J,,and J,
blocks |,, then J; will inherit the priority of |,

» A job | can preempt another job], is job] is not blocked and
its priority is higher than the priority, inherited or assigned, at
which job], is executing

20 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Schedule with PIP

priority A task blocks on a

A / direct blocking locked semaphore
3

| push -through blocking
A / | A task blocks because a

lower priority task
inherits a higher priority

21 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Properties of PIP

» Property |: A task can be blocked at most once by each
lower priority task

» Property 2: A task can be blocked at most once by each
semaphore it accesses

» If n is the number of lower priority tasks of t,and m is
the number of semaphores that t; can be blocked, then t.
can be blocked at most for the duration of min(n, m)
critical sections

22 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

PIP Properties — An Example

priority

7. I A s I cl D]
G N A
L 2 [o N

e 1, Can be blocked once by 1, (on A, or C,) and
once by t; (on B; or D)

e T, Can be blocked once by 1, (on B; or D,)

e T, cannot be blocked

23 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Problem 1: Chained Blocking

24

S

B,

P

B3
b

priority
A
T
Ty
A
13
T i

Theorem: 1, can be blocked at most once
by each lower priority task

Chapter 6: Resource Sharing in Real-Time Systems

2009/3/30

Problem 2: Deadlock still .

J1 Arrives J1 locks R2

J1

” s

£ X1sts

+ + +J1 requests R1, blocked

Deadlock!

b \

J2 Arrives J2 locks R1 J2 requests R2 (nested)

25 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Contents

26 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Priority Ceiling Protocol (PCP)

4

The goal of PCP protocol is to avoid deadlock and chained
blocking

Basic |dea: To ensure that when a job | preempts the critical
section of another job and executes its own critical section z,
the priority at which z will executes is guaranteed to be higher
than the inherited priorities of all the preempted critical
sections.

The idea is realized by firstly assigning a priority to each
semaphore, which is equal to the highest priority task that may
use this semaphore.A job] can start its execution in critical
section only if J’s priority is higher than all priority ceilings of
all the semaphores locked by jobs other than |.

27 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Schedule with PCP

W s; C(s) =P,
priority s, C(sy) =P

‘Tl h_-—-
T2 h
T

t,: T, 1s blocked by the PCP, smce P, < C(s,)

28 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Avoiding Deadlock by PCP

» An Example

Task properties
Jo={.., PSy), ... V(Sy), ..}
) =L PS)s o s PSy), . V(Sy), . V(S)), ...}
J, = {0 P, s P(S))s o a V(S)), - V(Sy), ..)

Priority ceilings of semaphores
P, = max {P,} = P,
s = max {P,,P,} = P,
P, = max {P,,P,} = P,

29 Chapter 6: Resource Sharing in Real-Time Systems

2009/3/30

Avoiding Deadlock by PCP

S, locked Sy unlocked
10 S

Attempts to lock S;
Blocked by J2 Sz locked s, unlocked

* S; locked S; unlocked
J1
S, locked S locked
2 [OCKE S; locked 1 unfocke S, unlocked
J2
|
| 1] 1] | [dime
tO tl tz t3 t4 t5 t6 t7 tg

30 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Avoiding Chained Blocking by PCP

» Assume], access S, and S,,], accesses S, and 5 accesses S,
» According to PCF P5; = Pg, = P,

J1 attempts to lock R1
Blocked by J3
J1
J2
J2 attempts to locks
R2, blocked by J3
J3

+ +

J3 locks R1 J3 unlocks R1

31 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Properties of PCP

» Property |: PCP can avoid deadlock
» Property 2: Blocking is reduced to only one CS

» PCP protocol has the “at-most-once” property, which is
highly desired in timing analysis

» Problem: PCP is not transparent to programmers -
semaphores needs manual ceiling (review PIP, inheritance
can be done without user intervention)

32 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Contents

4

» Resource Access Policies

» Schedulability Test under PCP

33 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

RM Schedulability Test Extended

» A set of n periodic tasks using PCP can be scheduled by RM
algorithms if the following conditions are satisfied

. . c, Ci Bi _ ...
{ { — —_— ERC) — ——<: 2‘!'—1
Vi, 1 <i <n, T1+Tz+ +],_E T,-—’()

» A set of n periodic tasks using PCP protocol can be scheduled
by RM algorithm if the following condition is satisfied

C, Ch (Bl Bn—l) I
— 4+t —d+max { —, -, . Enzfﬂ'_l
Tl Tn Tl Tn—l ()

» A set of n periodic tasks using PCP can be scheduled by RM
algorithm for all task phasing if

Vi, 1 <i <n,

) Tj (T C; B;
— | —— —_— <
(kl,l})lgﬂa [;Z—I: U"IT;: [T;.I +IT¢ +1Tg-] <1

34 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

Recommended Readings

l. Jane W.S. Liu, Real-Time Systems, 2002.
2. Liu Sha, R. Rajkumar and J.P. Lehoczky, Priority Inheritance Protocols an approach to real-time synchronization.
3. Priority inversion why you care and what to do about it.

4. N.Audsley and A. Burns, Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling.

» Acknowledgement

Lots of slides in this chapter are borrowed from Prof. Zonghua Gu’s RTS
course at HKUST, here we show our thankfulness to Prof. Gu ©

35 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

http://www.cse.ust.hk/~zgu/comp680g/�

Visit Our Website

» The Website of Real-Time Embedded Systems Laboratory,
Northeastern University

» You can find

General information on the projects conducted in our lab
Research and publications
Research information and contacts of the members

Some useful research links

» Write me emails if you have questions in RTS

36 Chapter 6: Resource Sharing in Real-Time Systems 2009/3/30

http://www.neu-rtes.org/�
http://www.neu-rtes.org/courses/spring2009/�
mailto:mingsong@research.neu.edu.cn�

	Chapter 6�Resource Sharing�In Real-Time Systems
	Objectives
	Contents
	Resource Sharing Model
	Resource Sharing Model
	Resource Sharing Model
	Resource Sharing in GPOS
	Priority Inversion
	Deadlock Still Exists
	Contents
	Resource Access Control
	Non-Preemptive Protocol
	Non-Preemptive Protocol
	Non-Preemptive Protocol
	Problems with NPP
	Highest Locker Priority
	Schedule with HLP
	Problems with HLP
	Contents
	Priority Inheritance Protocol (PIP)
	Schedule with PIP
	Properties of PIP
	PIP Properties – An Example
	Problem 1: Chained Blocking
	Problem 2: Deadlock still Exists
	Contents
	Priority Ceiling Protocol (PCP)
	Schedule with PCP
	Avoiding Deadlock by PCP
	Avoiding Deadlock by PCP
	Avoiding Chained Blocking by PCP
	Properties of PCP
	Contents
	RM Schedulability Test Extended
	Recommended Readings
	Visit Our Website 

