
Chapter 7
Real-time Systems on Multi-Cores

Real-Time Embedded Systems Laboratory
Northeastern University

Spring 2009 - Real-Time Systems
http://www.neu-rtes.org/courses/spring2009/

Presenter
Presentation Notes
http://www.neu-rtes.org/courses/spring2009/

http://www.neu-rtes.org/�
http://www.neu.edu.cn/�
http://www.neu-rtes.org/courses/spring2009/�

Let’s begin with an oooooold story
 once upon a time

2009-4-132 Chapter 7: Real-Time Systems on Multi-Cores

Let’s begin with an oooooold story
 there was a monk

2009-6-33 2009-4-133 Chapter 7: Real-Time Systems on Multi-Cores

Let’s begin with an oooooold story
 then comes another monk

2009-6-34 2009-4-134 Chapter 7: Real-Time Systems on Multi-Cores

Let’s begin with an oooooold story
 then comes the third monk

2009-6-35 2009-4-135 Chapter 7: Real-Time Systems on Multi-Cores

Let’s begin with an oooooold story
 What do we learn?

More workers may lead to less production, if they
can not cooperate well!

2009-6-36 2009-4-136 Chapter 7: Real-Time Systems on Multi-Cores

Open Question:
 What happens if there are 400 monks?

2009-6-37

... ...
2009-4-137 Chapter 7: Real-Time Systems on Multi-Cores

Welcome to the Cruel Multi-core World!
 Have you heard that an application running on a dual-core

chip can be actually slower than running on only one of them?

<

2009-4-138 Chapter 7: Real-Time Systems on Multi-Cores

Welcome to the Cruel Multi-core World!
 Have you heard that an application running on a dual-core

chip can be actually slower than running on only one of the
two cores?

 Unfortunately, that’s a real story.
according to a case-study of ABB robotic production application

<

2009-4-139 Chapter 7: Real-Time Systems on Multi-Cores

Welcome to the Cruel Multi-core World!
 Today, PicoChip is selling chips with more than 400 DSP

cores on it.

 Anant Agarwal (CEO of Tilera, also a professor in MIT) predicates there
will be more than 4000 cores on embedded processor
chips by 2017.

2009-4-1310 Chapter 7: Real-Time Systems on Multi-Cores

Multi-core is Booming
 for higher performance, lower power consumption, lower

cost, smaller size … …

2009-4-1311 Chapter 7: Real-Time Systems on Multi-Cores

Everyone is doing it!
 “Intel have 10 projects in the works that contain four or more computing

cores per chip”
[Paul Otellini, Intel Chief Executive at IDF fall 2005]

 “Today, processors with multiple CPUs and a large cache on a single chip
are becoming common.

 Attempts to tease the parallelism out of a sequential program
automatically haven’t worked out very well.

 We need better education, better languages, and better tools, since
building concurrent programs is hard”

 [Andrew Herbert, Director of Microsoft Cambridge Research Lab,
May 2005]

2009-4-1312 Chapter 7: Real-Time Systems on Multi-Cores

This Chapter

 Theoretic Aspect:
Multiprocessor scheduling foundations
(boring, but important to get insights!)

 Practical Aspect:
Interesting issues of building real time systems on multi-
core processors

2009-4-1313 Chapter 7: Real-Time Systems on Multi-Cores

This Chapter

 Theoretic Aspect:
Multiprocessor scheduling foundations
(boring, but important to get insights!)

 Practical Aspect:
Interesting issues of building real time systems on multi-
core processors

2009-4-1314 Chapter 7: Real-Time Systems on Multi-Cores

Task Model
 Independent periodic task set: n tasks
 For each task ti:
 Ci: execution time
 Di: relative deadline
 Ti: period

 Each task consists of a (infinite) sequence of jobs
For each job jik (the kth job of task ti):
 ri: release time
 di: relative deadline

2009-4-1315 Chapter 7: Real-Time Systems on Multi-Cores

Multiprocessor Model
 m processors

 Identical multiprocessors:
 each processor has the same computing capacity

 Uniform multiprocessors:
 different processors have different computing capacities

 Heterogeneous multiprocessors:
 each (task, processor) pair may have a different computing

capacity

2009-4-1316 Chapter 7: Real-Time Systems on Multi-Cores

Multiprocessor Model

P1 P2 P3

F
raction of com

puting capacity

2009-4-1317 Chapter 7: Real-Time Systems on Multi-Cores

Multiprocessor Model
 Identical multiprocessors:

each processor has the same computing capacity

P1 P2 P3

Task T1 Task T2

2009-4-1318 Chapter 7: Real-Time Systems on Multi-Cores

Multiprocessor Model
 Uniform multiprocessors:

different processors have different computing capacities

Task T1 Task T2

P1 P2 P3

x
x/2 x/3

y y/2 y/3

speed = 1 speed = 2 speed = 3
2009-4-1319 Chapter 7: Real-Time Systems on Multi-Cores

Multiprocessor Model
 Heterogeneous multiprocessors:

each (task, processor) pair may have a different computing

capacity
Task T1 Task T2

P1 P2 P3
x/2 x/3

x

y

1.5 y

y

2009-4-1320 Chapter 7: Real-Time Systems on Multi-Cores

Multiprocessor Model
 Why study heterogeneous multiprocessors:

 systems synthesized using specialized COTS processors

x/2 x/3

x

CPU DSP chip Graphics co-processor

Graphics-intensive task Number-crunching task

x/2 x/3

y

1.5 y
y

Task T1 Task T2

2009-4-1321 Chapter 7: Real-Time Systems on Multi-Cores

Classification of Multiprocessor Scheduling
 According to migration:

 Partitioned scheduling (no-migration)
 Each task may only execute on a specific processor

 Global scheduling (full-migration)
 Any task’s job may execute on any processor

 Middle approach (restrict-migration)
 Each job is assigned to a single processor, while a task is allowed to

migrate.
 In other words, inter-processor task migration is permitted only at job

boundaries.

2009-4-1322 Chapter 7: Real-Time Systems on Multi-Cores

Classification
 According to migration:

2009-4-1323 Chapter 7: Real-Time Systems on Multi-Cores

Classification
 According to priority assignment
 Static priorities

 A unique priority is associated with each task, and all jobs generated
by a task have the priority associated with that task

 E.g. RM

 Job-level dynamic priorities:
 For every pair of jobs Ji and Jj , if Ji has higher priority than Jj at some

instant in time, then Ji always has higher priority than Jj .
 EDF: proven optimal for uniprocessor scheduling

 Unrestricted dynamic priorities
 Relative priority of two jobs may change at any time.
 LLF: more optimal than EDF for MP scheduling

2009-4-1324 Chapter 7: Real-Time Systems on Multi-Cores

Classification

1: static
2: job-level

static
3: full dynamic

1: partitioned (1, 1) (1, 2) (1,3)

2: restrict
migration

(2,1) (2,2) (2,3)

3: full migration (3,1) (2,3) (3,3)

2009-4-1325 Chapter 7: Real-Time Systems on Multi-Cores

Classification
 Work-conserving scheduling
 a processor is never left idle while an active job exists
 e.g. Global EDF, Global RM, . . .

 Non-conserving scheduling
 a processor could be idle while an active job exists
 e.g. Restrict-migrate EDF, Partitioned EDF, . . .

2009-4-1326 Chapter 7: Real-Time Systems on Multi-Cores

Partitioned Scheduling
 Advantages:
 Mature scheduling framework
 – Most scheduling theory pertaining to uniprocessor

scheduling are also applicable here
 – Uniprocessor resource-management protocols can be used

 Partitioning of tasks can be automated
 – For example, using a bin-packing algorithm

 Disadvantages:
 Cannot exploit all unused execution time

 – Surplus capacity cannot be shared among processors

2009-4-1327 Chapter 7: Real-Time Systems on Multi-Cores

Partitioned Scheduling
 Complexity of schedulability analysis for partitioned

scheduling:
 The problem of deciding whether a task set is schedulable on

m processors with respect to partitioned scheduling is NP-
complete

 Consequence:
 There cannot be any pseudo-polynomial time algorithm for

finding an optimal partition of a set of tasks unless P = NP.

2009-4-1328 Chapter 7: Real-Time Systems on Multi-Cores

Partitioned Scheduling
 Bin-packing algorithms:
 The problem concerns packing objects of varying sizes in

boxes (”bins”) with the objective of minimizing number of used
boxes.

 Application to multiprocessor systems:
 Bins are represented by processors and objects by tasks.
 The decision whether a processor is ”full” or not is derived

from a utilization-based feasibility test.

 Assumptions:
 Independent, periodic tasks
 Preemptive, uniprocessor scheduling (RM)

2009-4-1329 Chapter 7: Real-Time Systems on Multi-Cores

Partitioned scheduling
 Bin-packing algorithms
 Rate-Monotonic-First-Fit (RMFF):
 Let the processors be indexed as N1, N2, …
 Assign the tasks in the order of increasing periods (that is, RM

order).
 For each task i, choose the lowest previously-used processor n

such that i, together with all tasks that have already been
assigned to processor n, can be feasibly scheduled according to
the utilization-based RM-feasibility test.

2009-4-1330 Chapter 7: Real-Time Systems on Multi-Cores

Global Scheduling
 General characteristics:
 All ready tasks are kept in a common (global) queue
 When selected for execution, a task can be dispatched to an

arbitrary processor, even after being preempted
 Task execution is assumed to be ”greedy”:

 If higher-priority tasks occupy all processors, a lower-priority task
cannot grab a processor until the execution of a higher priority task is
complete.

2009-4-1331 Chapter 7: Real-Time Systems on Multi-Cores

Global Scheduling
 Advantages:
 Supported by most multiprocessor operating systems

 Windows NT, Solaris, Linux, ...

 Effective utilization of processing resources
 Unused processor time can easily be reclaimed

 Disadvantages:
 Weak theoretical framework

 Few results from the uniprocessor case can be used

 Poor resource utilization for hard timing constraints
 No more than 50% resource utilization can be guaranteed

 Suffers from several scheduling anomalies
 Sensitive to period adjustments

2009-4-1332 Chapter 7: Real-Time Systems on Multi-Cores

Global Scheduling
 The ”root of all evil” in global scheduling: (Liu, 1969)

Few of the results obtained for a single processor generalize
directly to the multiple processor case; bringing in additional
processors adds a new dimension to the scheduling problem.
The simple fact that a task can use only one processor even when
several processors are free at the same time adds a surprising
amount of difficulty to the scheduling of multiple processors

2009-4-1333 Chapter 7: Real-Time Systems on Multi-Cores

Global Scheduling
 Dhall’s effect:
 With work-conserving scheduling algorithms, some low-

utilization task sets can be unschedulable regardless of how
many processors are used.

 Dependence on relative priority ordering:
 Changing the relative priority ordering among higher-priority

tasks may affect schedulability for a lower-priority task.

 Hard-to-find critical instant:
 A critical instant does not always occur when a task arrives at

the same time as all its higher-priority tasks’ release time.

2009-4-1334 Chapter 7: Real-Time Systems on Multi-Cores

Dhall’s Effect

2009-4-1335 Chapter 7: Real-Time Systems on Multi-Cores

Dhall’s Effect

2009-4-1336 Chapter 7: Real-Time Systems on Multi-Cores

Dhall’s Effect
 Problem: RM, DM and EDF only account for task periods!
 Actual computation demands are not accounted for.

 Solution: Dhall’s effect can easily be avoided by letting
tasks with high utilization receive higher priority:

2009-4-1337 Chapter 7: Real-Time Systems on Multi-Cores

Priority Assignment
 Impact of relative priority ordering:
 The response time of a task depends on the relative priority

ordering of the higher-priority tasks
 This property does not exist for a uniprocessor system
 This means that well-known uniprocessor methods for finding

optimal priority assignments (for example RM, EDF) cannot be
applied

 Consequence:
 New methods for constructing optimal multiprocessor priority

assignments are needed!

2009-4-1338 Chapter 7: Real-Time Systems on Multi-Cores

Priority Assignment
 Algorithm RM-US[m/(3m-2)]:
 RM-US[m/(3m-2)] assigns (static) priorities to tasks according

to the following rule:
1) if Ui > m/(3m-2) then task i has the highest priority (ties
broken arbitrarily)
2) if Ui ≤ m/(3m-2) then task i has RM priority

 Clearly, tasks with higher utilization get higher priority

2009-4-1339 Chapter 7: Real-Time Systems on Multi-Cores

Priority Assignment
 RM-US[m/(3m-2)] example:
 As an example of the priorities assigned by

RM-US[m/(3m-2)], consider the following task set to be
scheduled on a system with 3 identical processors:
task 1 = {C1=1, T1=7} (U1=0.143)
task 2 = {C2=2, T2=10} (U2=0.2)
task 3 = {C3=9, T3=20} (U3=0.45)
task 4 = {C4=11, T4=22} (U4=0.5)
task 5 = {C5=2, T5=25} (U5=0.08)

2009-4-1340 Chapter 7: Real-Time Systems on Multi-Cores

Priority Assignment
 RM-US[m/(3m-2)] example:
 For m-3

m/(3m-2) = 3/7 ≈ 0.4286

 Hence, tasks 3 and 4 will be assigned higher priorities, and
remaining tasks will be assigned RM priorities.

 The possible priority assignments are therefore as follows
(highest-priority task listed first):
3, 4, 1, 2, 5 or 4, 3, 1, 2, 5

2009-4-1341 Chapter 7: Real-Time Systems on Multi-Cores

Priority Assignment
 Processor Utilization analysis for RM-US[m/3m-2]
 A sufficient condition for RM-US[m/(3m-2)] scheduling on m

identical processor is

 Question: does RM-US[m/(3m-2)] avoid Dhall’s effecit?

2009-4-1342 Chapter 7: Real-Time Systems on Multi-Cores

Priority Assignment
 Processor Utilization analysis for RM-US[m/3m-2]

 Regardless of the number of processors, the task set will
always meet its deadlines as long as no more than one third of
the processing capacity is used.

 RM-US[m/(3m-2)] thus avoid Dhall’s effect since we can always
add more processors if deadlines were missed.

 Note that this remedy was not possible with pure RM.

2009-4-1343 Chapter 7: Real-Time Systems on Multi-Cores

Response Time Analysis
 Response-time analysis for multiprocessors:
 Uses the same principle as the uniprocessor case, where the

response time for a task i consists of;
Ci: The task’s WCET
Ii: Interference form higher-priority tasks

 The difference with uniprocessor
 Unknown critical instant
 the calculation of interference now has to account for the fact that

higher-priority tasks can execute in parallel with the analyzed task

2009-4-1344 Chapter 7: Real-Time Systems on Multi-Cores

Hard-to-Find Critical Instant
 with RM scheduling

2009-4-1345 Chapter 7: Real-Time Systems on Multi-Cores

Hard-to-Find Critical Instant
 A critical instant does not always occurs when arrives at

the same time as all its higher-priority
 Finding the critical instant is NP-complete
 Note: recall that knowledge about the critical instant is a

fundamental property in uniprocessor feasibility tests

 Consequence: new methods for constructing effective
multiprocessor feasibility tests are needed!

2009-4-1346 Chapter 7: Real-Time Systems on Multi-Cores

Poor Resource Utilization
 A fundamental limit:

The ulitization guarantee bound for any static-priority
multiprocessor scheduling algorithm can not be higher
than ½ of the capacity of the processors.

 This applies for all types of static-priority scheduling.
(partitioned and global)

 Hence, we can never expect to always utilize more than
half the processing capacity if hard timing constraints
exist

2009-4-1347 Chapter 7: Real-Time Systems on Multi-Cores

MP Scheduling Anomalies
 Adding processors and reducing computation times and

other parameters can actually decrease optimal
performance with some scenarios!

 EDF does not suffer from execution-time anomalies, but
does suffer from period anomalies.

2009-4-1348 Chapter 7: Real-Time Systems on Multi-Cores

Doubling Processor Speed

2009-4-1349 Chapter 7: Real-Time Systems on Multi-Cores

Anomalies under Resource Constraints
 Task set of five tasks on two processors
 Task 2 and 4 share the a resource in exclusive mode
 Static allocation P1 (1,2) and P2 (3,4,5)
 Reducing the computation time of task 1 will increase the

optimal schedule time!

2009-4-1350 Chapter 7: Real-Time Systems on Multi-Cores

This Chapter

 Theoretic Aspect:
Multiprocessor scheduling foundations
(boring, but important to get insights!)

 Practical Aspect:
Interesting issues of building real time
systems on multi-core processors

2009-4-1351 Chapter 7: Real-Time Systems on Multi-Cores

Typical Multicore Architectures
 Niagara

(which is usually considered to be the start of modern
multicore processors)

Shared L2 Cache!
(several banks)

2009-4-1352 Chapter 7: Real-Time Systems on Multi-Cores

Typical Multicore Architectures
 Niagara 2

2009-4-1353 Chapter 7: Real-Time Systems on Multi-Cores

Typical Multicore Architectures
 TILERA (Network-on-Chips)

2009-4-1354 Chapter 7: Real-Time Systems on Multi-Cores

Typical Multicore Architectures
 AMD Barcelona, 65 nm

2009-4-1355 Chapter 7: Real-Time Systems on Multi-Cores

Typical Multicore Architectures
 AMD Shanghai, 45 nm

2009-4-1356 Chapter 7: Real-Time Systems on Multi-Cores

Typical Multicore Architectures
 AMD Istanbul, 45 nm (coming soon)

from the network, not based on the fact

2009-4-1357 Chapter 7: Real-Time Systems on Multi-Cores

Typical Multicore Architectures
 Intel Core2 Quad, 45 nm

2009-4-1358 Chapter 7: Real-Time Systems on Multi-Cores

Typical Multicore Architectures
 Intel: Dunnington, 45nm

2009-4-1359 Chapter 7: Real-Time Systems on Multi-Cores

Typical Multicore Architectures
 Intel: Nehalem, Core i7, 45 nm

2009-4-1360 Chapter 7: Real-Time Systems on Multi-Cores

New Challenges
 Shared Computation Resources
 Shared L2 Cache
 Shared Bus

 Interference among Cores

2009-4-1361 Chapter 7: Real-Time Systems on Multi-Cores

Example
 Worst Case Execution Time (WCET)
 the foundation of system-level timing analysis schedulability analysis,

response time analysis, …

 cache behavior modeling and analysis
 cache hit/miss lead to different execution time for each instruction
 well-studied in single-processor systems

2009-4-1362 Chapter 7: Real-Time Systems on Multi-Cores

Example
 the brief idea of cache analysis

b ;

a ;

program cache model (LRU)

c ;

a ;

d ;

c ;

b;

a

b a

c b a

a c b

d a c

c d a

b c d

miss

miss

miss

hit

miss

hit

miss

4 + 2 = 6

4 + 3 = 7

4 + 4 = 8

0 + 2 = 2

4 + 1 = 5

0 + 4 = 4

4 + 3 = 7

instruction
cycles

cache miss
penalty + =

instruction
execution time

2009-4-13

63

Chapter 7: Real-Time Systems on Multi-Cores

Example
 the typical multi-core architecture
 shared L2 cache

Private
L1 Cache

Private
L1 Cache

Private
L1 Cache

Private
L1 Cache

Shared L2 Cache

Core 1 Core 2 Core 3 Core 4

2009-4-1364 Chapter 7: Real-Time Systems on Multi-Cores

Example
 the typical multi-core architecture
 shared L2 cache

Task 1 Task 2 Task 3 Task 4

2009-4-1365 Chapter 7: Real-Time Systems on Multi-Cores

Example
 the typical multi-core architecture
 the content belonging to task 1 may be evicted by the content

belonging to task 2

Task 1 Task 2 Task 3 Task 4

2009-4-1366 Chapter 7: Real-Time Systems on Multi-Cores

Example
 the typical multi-core architecture
 the content belonging to task 1 may be evicted by the content

belonging to task 2

Task 1 Task 2 Task 3 Task 4

2009-4-1367 Chapter 7: Real-Time Systems on Multi-Cores

Example
 for one task

b ;

a ;

program shared cache model

c ;

a ;

d ;

c ;

b ;

?

?

?

?

?

?

?

? + 2 = ?

? + 3 = ?

? + 4 = ?
? + 2 = ?

? + 1 = ?
? + 4 = ?

? + 3 = ?

instruction
cycles

cache miss
penalty + =

instruction
execution time

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

2009-4-1368 Chapter 7: Real-Time Systems on Multi-Cores

Example
 WCET analysis in presence of shared cache

 Cache behavior is more unpredictable
 Freely interleaving of instructions on different cores

 Precise analysis is extremely difficult
 Huge state space
 Un-completed information

2009-4-1369 Chapter 7: Real-Time Systems on Multi-Cores

Solutions?
 cache space isolation to avoid interference between tasks

Task 1 Task 2 Task 3 Task 4

2009-4-1370 Chapter 7: Real-Time Systems on Multi-Cores

Solutions?
 therefore we can apply traditional WCET analysis

techniques to each task

Task 1 Task 2 Task 3 Task 4

2009-4-1371 Chapter 7: Real-Time Systems on Multi-Cores

Cache Space Isolation
 How to implement Cache Space Isolation?
 Hardware-based methods

 Software-based methods
 Page-coloring

2009-4-1372 Chapter 7: Real-Time Systems on Multi-Cores

Cache Space Isolation
 Page coloring

… …

Virtual Pages of Process A Virtual Pages of Process B

Physical Pages

… … … …

L2 Cache

controlled by
software (OS)

indexed by hardware

2009-4-1373 Chapter 7: Real-Time Systems on Multi-Cores

Cache Space Isolation
 Page coloring
 address bit-view (Linux + Power 5)

L2 Cache

Physical
Memory

4 bits of OS control

31 15 11 0

31 15 11 0

Associative
set number

Physical Page Number Page Offset

16 colors supported
2009-4-1374 Chapter 7: Real-Time Systems on Multi-Cores

Co-runner

Input every 5 ms
Func A

Func B

Func C

Input every 10 ms

Input every 15 ms

Get result before the next input

Get result before the next input

Get result before the next input

2009-4-1375 Chapter 7: Real-Time Systems on Multi-Cores

Co-runner

Func A

A1

A2

A4

A6
A5

A7

A3

Func B

B1

B2
B4

B5

B3

Func C

C1

C2

C3 C4

C5

2009-4-1376 Chapter 7: Real-Time Systems on Multi-Cores

Co-runner
 the cache (memory) requirement of executing

is higher than running

 the concept of
“good” co-runner
“bad” co-runner

Ai Bj Ck

Ai Aj Ak

2009-4-1377 Chapter 7: Real-Time Systems on Multi-Cores

	Chapter 7� Real-time Systems on Multi-Cores
	Let’s begin with an oooooold story
	Let’s begin with an oooooold story
	Let’s begin with an oooooold story
	Let’s begin with an oooooold story
	Let’s begin with an oooooold story
	Open Question:
	Welcome to the Cruel Multi-core World!
	Welcome to the Cruel Multi-core World!
	Welcome to the Cruel Multi-core World!
	Multi-core is Booming
	Everyone is doing it!
	This Chapter
	This Chapter
	Task Model
	Multiprocessor Model
	Multiprocessor Model
	Multiprocessor Model
	Multiprocessor Model
	Multiprocessor Model
	Multiprocessor Model
	Classification of Multiprocessor Scheduling
	Classification
	Classification
	Classification
	Classification
	Partitioned Scheduling
	Partitioned Scheduling
	Partitioned Scheduling
	Partitioned scheduling
	Global Scheduling
	Global Scheduling
	Global Scheduling
	Global Scheduling
	Dhall’s Effect
	Dhall’s Effect
	Dhall’s Effect
	Priority Assignment
	Priority Assignment
	Priority Assignment
	Priority Assignment
	Priority Assignment
	Priority Assignment
	Response Time Analysis
	Hard-to-Find Critical Instant
	Hard-to-Find Critical Instant
	Poor Resource Utilization
	MP Scheduling Anomalies
	Doubling Processor Speed
	Anomalies under Resource Constraints
	This Chapter
	Typical Multicore Architectures
	Typical Multicore Architectures
	Typical Multicore Architectures
	Typical Multicore Architectures
	Typical Multicore Architectures
	Typical Multicore Architectures
	Typical Multicore Architectures
	Typical Multicore Architectures
	Typical Multicore Architectures
	New Challenges
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Solutions?
	Solutions?
	Cache Space Isolation
	Cache Space Isolation
	Cache Space Isolation
	Co-runner
	Co-runner
	Co-runner

