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Let’s begin with an oooooold story

» once upon atime......
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Let’s begin with an oooooold story
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Let’s begin with an oooooold story

» then comes another monk ......
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Let’s begin with an oooooold story
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Let’s begin with an oooooold story

» What do we learn!?

More workers may lead to less production, if they
can not cooperate well!
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Open Question:
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Welcome to the Cruel Multi-core World!

» Have you heard that an application running on a dual-core
chip can be actually slower than running on only one of them?
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Welcome to the Cruel Multi-core World!

» Have you heard that an application running on a dual-core
chip can be actually slower than running on only one of the
two cores?

» Unfortunately, that’s a real story.

according to a case-study of ABB robotic production application

9 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13



Welcome to the Cruel Multi-core World!

» Today, PicoChip is selling chips with more than 400 DSP
cores on it.

» Anant Agarwal (CEO ofTilera, also a professor in MIT) predicates there

will be more than 4000 cores on embedded processor
chips by 2017.
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Multi-core is Booming

» for higher performance, lower power consumption, lower

cost, smaller size ... ...
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Everyone is doing it!

“Intel have 10 projects in the works that contain four or more computing
cores per chip”

[Paul Otellini, Intel Chief Executive at IDF fall 2005]

“Ioday, processors with multiple CPUs and a large cache on a single chip
are becoming common.

Attempts to tease the parallelism out of a sequential program
automatically haven’t worked out very well.

We need better education, better languages, and better tools, since
building concurrent programs is hard”

[Andrew Herbert, Director of Microsoft Cambridge Research Lab,
May 2005]
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This Chapter

» Theoretic Aspect:
Multiprocessor scheduling foundations

( boring, but important to get insights! )

» Practical Aspect:

Interesting issues of building real time systems on multi-
core processors
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This Chapter

» Theoretic Aspect:

Multiprocessor scheduling foundations -
( boring, but important to get insights! )
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Task Model

» Independent periodic task set: n tasks
» For each task t:

C: execution time
D: relative deadline
T: period
» Each task consists of a (infinite) sequence of jobs

For each job j* (the k™ job of task t):
r: release time

d: relative deadline
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Multiprocessor Model

» M processors

» ldentical multiprocessors:

each processor has the same computing capacity

» Uniform multiprocessors:

different processors have different computing capacities

» Heterogeneous multiprocessors:

each (task, processor) pair may have a different computing
capacity
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Multiprocessor Model
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Multiprocessor Model

» ldentical multiprocessors:

each processor has the same computing capacity

Task T1 Task T2
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Multiprocessor Model

» Uniform multiprocessors:

different processors have different computing capacities

Task T1 Task T2

. el — ot
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Multiprocessor Model

» Heterogeneous multiprocessors:

each (task, processor) pair may have a different computing
capacity
Task T1 Task T2

3 d=—I
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Multiprocessor Model

» Why study heterogeneous multiprocessors:

» systems synthesized using specialized COTS processors

Task T1 Graphics-intensive task Task T2 Number-crunching task

3 3 I

«2] | x3 |

DSP chip Graphics co-processor
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Classification of Multiprocessor Scheduling

» According to migration:

Partitioned scheduling (no-migration)
Each task may only execute on a specific processor

Global scheduling (full-migration)
Any task’s job may execute on any processor

Middle approach (restrict-migration)

Each job is assigned to a single processor, while a task is allowed to
migrate.

In other words, inter-processor task migration is permitted only at job
boundaries.
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Classification

» According to migration:

global scheduling partitioned scheduling

new task
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Classification

» According to priority assignment
Static priorities

A unique priority is associated with each task, and all jobs generated
by a task have the priority associated with that task

E.g.RM
Job-level dynamic priorities:

For every pair of jobs J; and J;, if J; has higher priority than J; at some
instant in time, then J; always has higher priority than J; .

EDF: proven optimal for uniprocessor scheduling
Unrestricted dynamic priorities

Relative priority of two jobs may change at any time.

LLF: more optimal than EDF for MP scheduling
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Classification

. 2: job-level .
| : static . 3: full dynamic
static

|: partitioned (I, 1) (1,2) (1,3)
2: restrict

o (2,1) (2,2) (2,3)

migration
3: full migration (3,1) (2,3) (3,3)
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Classification

» Work-conserving scheduling

a processor is never left idle while an active job exists
e.g. Global EDF, Global RM,, ...

» Non-conserving scheduling
a processor could be idle while an active job exists
e.g. Restrict-migrate EDF Partitioned EDEF,...
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Partitioned Scheduling

» Advantages:
Mature scheduling framework

— Most scheduling theory pertaining to uniprocessor
scheduling are also applicable here
— Uniprocessor resource-management protocols can be used

» Partitioning of tasks can be automated
— For example, using a bin-packing algorithm

» Disadvantages:
Cannot exploit all unused execution time

— Surplus capacity cannot be shared among processors
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Partitioned Scheduling

» Complexity of schedulability analysis for partitioned
scheduling:

The problem of deciding whether a task set is schedulable on
m processors with respect to partitioned scheduling is NP-
complete

» Consequence:

There cannot be any pseudo-polynomial time algorithm for
finding an optimal partition of a set of tasks unless P = NP.

28 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13



Partitioned Scheduling

» Bin-packing algorithms:
The problem concerns packing objects of varying sizes in

boxes ("bins”) with the objective of minimizing number of used
boxes.

» Application to multiprocessor systemes:
Bins are represented by processors and objects by tasks.

The decision whether a processor is "full” or not is derived
from a utilization-based feasibility test.

» Assumptions:
Independent, periodic tasks

Preemptive, uniprocessor scheduling (RM)
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Partitioned scheduling

» Bin-packing algorithms
» Rate-Monotonic-First-Fit (RMFF):

Let the processors be indexed as N1, N2, ...

Assign the tasks in the order of increasing periods (that is, RM
order).

For each task i, choose the lowest previously-used processor n
such that i, together with all tasks that have already been
assigned to processor n, can be feasibly scheduled according to
the utilization-based RM-feasibility test.
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Global Scheduling

» General characteristics:
All ready tasks are kept in a common (global) queue

When selected for execution, a task can be dispatched to an
arbitrary processor, even after being preempted
Task execution is assumed to be "greedy”:

If higher-priority tasks occupy all processors, a lower-priority task
cannot grab a processor until the execution of a higher priority task is
complete.
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Global Scheduling

» Advantages:
Supported by most multiprocessor operating systems
Windows NT, Solaris, Linux, ...
Effective utilization of processing resources

Unused processor time can easily be reclaimed
» Disadvantages:
Weak theoretical framework
Few results from the uniprocessor case can be used

Poor resource utilization for hard timing constraints

No more than 50% resource utilization can be guaranteed

Suffers from several scheduling anomalies

Sensitive to period adjustments
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Global Scheduling
» The "root of all evil” in global scheduling: (Liu, 1969)

33

Few of the results obtained for a single processor generalize
directly to the multiple processor case; bringing in additional
processors adds a new dimension to the scheduling problem.
The simple fact that a task can use only one processor even when
several processors are free at the same time adds a surprising
amount of difficulty to the scheduling of multiple processors
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Global Scheduling

» Dhall’s effect:

With work-conserving scheduling algorithms, some low-
utilization task sets can be unschedulable regardless of how
many processors are used.

» Dependence on relative priority ordering:
Changing the relative priority ordering among higher-priority
tasks may affect schedulability for a lower-priority task.

» Hard-to-find critical instant:

A critical instant does not always occur when a task arrives at
the same time as all its higher-priority tasks’ release time.
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Dhall's Effect

Dhall's effect: (Dhall & Liu, 1978) r,={C =271 =1}
7,={C,=2¢T,=1}
t,={C =2¢T,=1}
(RM scheduling) 7,={C,=1LT,=1+¢]

Ty r, misses its deadline
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Dhall's .

Dhall's effect:

e Applies for (greedy) RM, DM and EDF scheduling

wffect

e | east utilization of unschedulable task sets can be arbitrarily

close to 1 no matter how many processors are used.
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Consequence:
New multiprocessor priority-assignment schemes are needed!
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Dhall's Effect

» Problem: RM, DM and EDF only account for task periods!

Actual computation demands are not accounted for.

» Solution: Dhall’s effect can easily be avoided by letting
tasks with high utilization receive higher priority:

R T | 4
A | j@E 1A
3l o a
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Priority Assignment

» Impact of relative priority ordering:

The response time of a task depends on the relative priority
ordering of the higher-priority tasks

This property does not exist for a uniprocessor system

This means that well-known uniprocessor methods for finding
optimal priority assignments (for example RM, EDF) cannot be
applied

» Consequence:

New methods for constructing optimal multiprocessor priority
assighments are needed!
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Priority Assignment

» Algorithm RM-US[m/(3m-2)]:
RM-US[m/(3m-2)] assigns (static) priorities to tasks according
to the following rule:

l) if U > m/(3m-2) then task i has the highest priority (ties
broken arbitrarily)

2) if U, = m/(3m-2) then task i has RM priority

Clearly, tasks with higher utilization get higher priority
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Priority Assignment
» RM-US[m/(3m-2)] example:

As an example of the priorities assigned by

RM-US[m/(3m-2)], consider the following task set to be
scheduled on a system with 3 identical processors:

task | ={C,=I,T,=7} (U,=0.143)
task 2 = {C,=2,T,=10}  (U,=0.2)
task 3 = {C,=9,T,=20}  (U,=0.45)
task 4 = {C,=11,T,=22} (U,=0.5)
task 5 = {C,=2,T.=25}  (U,=0.08)
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Priority Assignment
» RM-US[m/(3m-2)] example:

For m-3
m/(3m-2) = 3/7 = 0.4286

Hence, tasks 3 and 4 will be assigned higher priorities, and
remaining tasks will be assigned RM priorities.

The possible priority assignments are therefore as follows
(highest-priority task listed first):
3,4,1,2,5 or 4,3,1,2,5

41 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13



Priority Assignment

» Processor Utilization analysis for RM-US[m/3m-2]

A sufficient condition for RM-US[m/(3m-2)] scheduling on m
identical processor is

Question: does RM-US[m/(3m-2)] avoid Dhall’s effecit?
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Priority Assignment

» Processor Utilization analysis for RM-US[m/3m-2]

43

m’ m

Urs-ustmicm-2y = }Eﬂ 3m-2 3

Regardless of the number of processors, the task set will
always meet its deadlines as long as no more than one third of

the processing capacity is used.

RM-US[m/(3m-2)] thus avoid Dhall’s effect since we can always
add more processors if deadlines were missed.

Note that this remedy was not possible with pure RM.
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Response Time Analysis

» Response-time analysis for multiprocessors:

Uses the same principle as the uniprocessor case, where the
response time for a task i consists of;

C.:The task’s WCET
l: Interference form higher-priority tasks

R,=C,+1,

The difference with uniprocessor
Unknown critical instant

the calculation of interference now has to account for the fact that
higher-priority tasks can execute in parallel with the analyzed task
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Hard-to-Find Critical Instant

response time of r, is maximized for second instance

/
AlAER B AEiERd AR
A
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Hard-to-Find Critical Instant

» A critical instant does not always occurs when arrives at
the same time as all its higher-priority

» Finding the critical instant is NP-complete

» Note: recall that knowledge about the critical instant is a
fundamental property in uniprocessor feasibility tests

» Consequence: new methods for constructing effective
multiprocessor feasibility tests are needed!
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Poor Resource Utilization

» A fundamental limit;

The ulitization guarantee bound for any static-priority
multiprocessor scheduling algorithm can not be higher
than "2 of the capacity of the processors.

» This applies for all types of static-priority scheduling.
(partitioned and global)

» Hence, we can never expect to always utilize more than
half the processing capacity if hard timing constraints
exist
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MP Scheduling Anomalies

» Adding processors and reducing computation times and
other parameters can actually decrease optimal
performance with some scenarios!

» EDF does not suffer from execution-time anomalies, but
does suffer from period anomalies.
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Doubling Processor Speed

T 1 | | Y -

2 u —
dmtblf speed .~ deadline miss

T 1 Y >

49 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13



Anomalies under Resource Constraints

» Task set of five tasks on two processors
» Task 2 and 4 share the a resource in exclusive mode
» Static allocation P1 (1,2) and P2 (3,4,5)

» Reducing the computation time of task | will increase the
optimal schedule time!

critical section

Pl ] 2
P2 3 - 5

|
0 2 4 5 3 10 12 14 15 18 20 22

Pl 1 2
2 3 - 5
| |
o2 4 6 8 10 12 14 16 18 20 22
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This Chapter

» Practical Aspect:

Interesting issues of building real time -

systems on multi-core processors
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Typical Multicore Architectures

» Niagara

(which is usually considered to be the start of modern

multicore processors)

Shared L2 Cache!
(several banks)

52
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Typical Multicore Architectures

» Niagara 2

53

4x DDR-2 = 25GB /s (1)
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Typical Multicore Architectures

» TILERA (Network-on-Chips)

54

Tl Py reso
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buibding block

64 cores connected in a mesh
Local L1 + L2 caches

Shared distributed L3 cache
Linux + ANSI C

New Libraries
New IDE

Stream computing
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Typical Multicore Architectures
» AMD Barcelona, 65 nm

Hyper Transport DDR-2
L3 ZMB
X-bar
L2§ 2% L2§ 2%
512xB 512kB 512<B S512kB
D5 15 D% 1% D% = Dt I%
e4kB| |s4kB| |s4kB| |c4kB| |64kB| |s4kB| |64kB| |G4kB
cCPU CPU CPU CPU
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Typical Multicore Architectures

» AMD Shanghai, 45 nm
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Hyper Transport DDR-2
L3 SAMIE
X-bar
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Typical Multicore Architectures

» AMD Istanbul, 45 nm (coming soon)

Hyper Transport DDR-3 277
A
L3 12 MBE
®-bar
L2% L25% L2%
512kB 512kB 512kB
D% 1% D4 1% D% 1% D4 1% D% I$ Ds 1%
s4kB| |s4kB| |s4kB| |s4kB| |s4kB| |sakp| |&4kB| |e4kB| |54kB| [64kB| |s4kB| [s4kB
CPU CPU CPU CPU CPU CPU

from the network, not based on the fact
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Typical Multicore Architectures

» Intel Core2 Quad, 45 nm
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Typical Multicore Architectures

» Intel: Dunnington, 45nm
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Typical Multicore Architectures

Intel: Nehalem, Core i7,45 nm

60
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New Challenges

» Shared Computation Resources
Shared L2 Cache
Shared Bus

» Interference among Cores
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Example
» Worst Case Execution Time (WCET)

the foundation of system-level timing analysis schedulability analysis,
response time analysis, ...

cache behavior modeling and analysis
cache hit/miss lead to different execution time for each instruction

well-studied in single-processor systems
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Example
» the brief idea of cache analysis

program  cache model (LRU) cache miss instruction  instruction
penalty *  cycles = execution time

P S e iss 4+ 2 = 6
A 4 a
P S —— mIss _________.. z + 3 = 7
A 4 b a
S O —. miss ___________. 4 + 4 = 8
il c|b|a
A hit .. o + 2 = 2
a,
J alc|b
P S —— miss __________.. ! + 1 = 3)
il diajc
e e hit . o + 4 = 4
’ c|d|a
e S —. mIss __________. 4 + 3 = 7
> b|c|d
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Example

» the typical multi-core architecture

shared L2 cache

Core 1 Core 2 Core 3 Core 4

Private Private Private Private
L1 Cache L1 Cache L1 Cache L1 Cache

Shared L2 Cache
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Example

» the typical multi-core architecture

shared L2 cache

o) () () (o
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Example

» the typical multi-core architecture

the content belonging to task | may be evicted by the content
belonging to task 2

)
—
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Example

» the typical multi-core architecture

the content belonging to task | may be evicted by the content
belonging to task 2

)
—
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Example

» for one task

program

shared cache model

penalty +
Y S ? +
222
Y S
?
2[2? *
Y S
2[2 2 *
_________________________ (S +
222
Y S
222 *
Y S +
222
? 7+
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Example

» WCET analysis in presence of shared cache

Cache behavior is more unpredictable

Freely interleaving of instructions on different cores
Precise analysis is extremely difficult

Huge state space

Un-completed information
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Solutions?

» cache space isolation to avoid interference between tasks

)
~—
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Solutions?

» therefore we can apply traditional WCET analysis

techniques to each task

71
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Cache Space Isolation

» How to implement Cache Space Isolation?

Hardware-based methods

Software-based methods

Page-coloring
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Cache Space Isolation

» Page coloring

Virtual Pages of Process A Virtual Pages of Process B

controlled by
software (OS)

PhysicalPages | B B -

S« 7 = indexed by hardware

L2 Cache
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Cache Space Isolation

» Page coloring

address bit-view (Linux + Power 5)

31 15 11 0
L2 Cache .iative
mber
31 15 11 0
Physical _
Memory Physical Page Number Page Offset
4 bits of OS control

16 colors supported
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Co-runner

Input every 5 ms Get result before the next input

| >[FuncA}' =

Input every 10 ms Get result before the next input

Input every 15 ms Get result before the next input

ST Rmes T
[ Rnec [T T
-
Ged
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Co-runner
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Co-runner

» the cache (memory) requirement of executing

LA BB (%KD

is higher than running

» the concept of
“good” co-runner

“bad” co-runner
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