Spring 2009 - Real-Time Systems

Chapter 7
Real-time Systems on Multi-Cores

Presenter
Presentation Notes
http://www.neu-rtes.org/courses/spring2009/

http://www.neu-rtes.org/�
http://www.neu.edu.cn/�
http://www.neu-rtes.org/courses/spring2009/�

Let’s begin with an oooooold story

» once upon atime......

2 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Let’s begin with an oooooold story

» 3 Chapter 7: Real-Time Systems on Multi-Cores 200994613

Let’s begin with an oooooold story

» then comes another monk

4 Chapter 7: Real-Time Systems on Multi-Cores 200094613

Let’s begin with an oooooold story

» 5 Chapter 7: Real-Time Systems on Multi-Cores 200094613

Let’s begin with an oooooold story

» What do we learn!?

More workers may lead to less production, if they
can not cooperate well!

» 6 Chapter 7: Real-Time Systems on Multi-Cores 200094613

Open Question:

Chapter 7: Real-Time Systems on Multi-Cores 200094613

Welcome to the Cruel Multi-core World!

» Have you heard that an application running on a dual-core
chip can be actually slower than running on only one of them?

8 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Welcome to the Cruel Multi-core World!

» Have you heard that an application running on a dual-core
chip can be actually slower than running on only one of the
two cores?

» Unfortunately, that’s a real story.

according to a case-study of ABB robotic production application

9 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Welcome to the Cruel Multi-core World!

» Today, PicoChip is selling chips with more than 400 DSP
cores on it.

» Anant Agarwal (CEO ofTilera, also a professor in MIT) predicates there

will be more than 4000 cores on embedded processor
chips by 2017.

10 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Multi-core is Booming

» for higher performance, lower power consumption, lower

cost, smaller size

[Amarasinghe06]

5 1 2 Picochip ampric

PC102 Ad g paonas

256 Ciszio A

CSR-1
128 Intel
Tflops
3 3
= 64
o
° 32
""6 Raza Cawium
Raw XLR Octeon
+H+ 16 £ At
8 Miagara s Acell
4 Boardcom 1480 Opteron 4P
¥box360
FA-2800 Opteron Tanglewood
2 Fowerd A
PExtreme Powerk
. . Yonah
4004 2080 a0as 286 386 486 Pentium P2 P3 Hanium
1 ki o ik i i kil
BOOB Athlon ltamium 2
|
18970 1975 1980 1985 1990 1995 2000 2005 2077

I Chapter 7: Real-Time Systems on Multi-Cores

2009-4-13

v

Everyone is doing it!

“Intel have 10 projects in the works that contain four or more computing
cores per chip”

[Paul Otellini, Intel Chief Executive at IDF fall 2005]

“Ioday, processors with multiple CPUs and a large cache on a single chip
are becoming common.

Attempts to tease the parallelism out of a sequential program
automatically haven’t worked out very well.

We need better education, better languages, and better tools, since
building concurrent programs is hard”

[Andrew Herbert, Director of Microsoft Cambridge Research Lab,
May 2005]

12 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

This Chapter

» Theoretic Aspect:
Multiprocessor scheduling foundations

(boring, but important to get insights!)

» Practical Aspect:

Interesting issues of building real time systems on multi-
core processors

13 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

This Chapter

» Theoretic Aspect:

Multiprocessor scheduling foundations -
(boring, but important to get insights!)

14 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Task Model

» Independent periodic task set: n tasks
» For each task t:

C: execution time
D: relative deadline
T: period
» Each task consists of a (infinite) sequence of jobs

For each job j* (the k™ job of task t):
r: release time

d: relative deadline

Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Multiprocessor Model

» M processors

» ldentical multiprocessors:

each processor has the same computing capacity

» Uniform multiprocessors:

different processors have different computing capacities

» Heterogeneous multiprocessors:

each (task, processor) pair may have a different computing
capacity

16 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Multiprocessor Model

Aoedes Bunndwod jo uonoe.

P P2 P3

|7 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Multiprocessor Model

» ldentical multiprocessors:

each processor has the same computing capacity

Task T1 Task T2

» 18 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Multiprocessor Model

» Uniform multiprocessors:

different processors have different computing capacities

Task T1 Task T2

. el — ot

» 19 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Multiprocessor Model

» Heterogeneous multiprocessors:

each (task, processor) pair may have a different computing
capacity
Task T1 Task T2

3 d=—I

» 20 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Multiprocessor Model

» Why study heterogeneous multiprocessors:

» systems synthesized using specialized COTS processors

Task T1 Graphics-intensive task Task T2 Number-crunching task

3 3 I

«2] | x3 |

DSP chip Graphics co-processor

» 21 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Classification of Multiprocessor Scheduling

» According to migration:

Partitioned scheduling (no-migration)
Each task may only execute on a specific processor

Global scheduling (full-migration)
Any task’s job may execute on any processor

Middle approach (restrict-migration)

Each job is assigned to a single processor, while a task is allowed to
migrate.

In other words, inter-processor task migration is permitted only at job
boundaries.

22 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Classification

» According to migration:

global scheduling partitioned scheduling

new task

®
e
,ooolp ®
+ ®
©
of-1- I

cpu 1 cpu 2 cpul

e

23 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

=

Classification

» According to priority assignment
Static priorities

A unique priority is associated with each task, and all jobs generated
by a task have the priority associated with that task

E.g.RM
Job-level dynamic priorities:

For every pair of jobs J; and J;, if J; has higher priority than J; at some
instant in time, then J; always has higher priority than J; .

EDF: proven optimal for uniprocessor scheduling
Unrestricted dynamic priorities

Relative priority of two jobs may change at any time.

LLF: more optimal than EDF for MP scheduling

24 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Classification

. 2: job-level .
| : static . 3: full dynamic
static

|: partitioned (I, 1) (1,2) (1,3)
2: restrict

o (2,1) (2,2) (2,3)

migration
3: full migration (3,1) (2,3) (3,3)
25 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Classification

» Work-conserving scheduling

a processor is never left idle while an active job exists
e.g. Global EDF, Global RM,, ...

» Non-conserving scheduling
a processor could be idle while an active job exists
e.g. Restrict-migrate EDF Partitioned EDEF,...

26 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Partitioned Scheduling

» Advantages:
Mature scheduling framework

— Most scheduling theory pertaining to uniprocessor
scheduling are also applicable here
— Uniprocessor resource-management protocols can be used

» Partitioning of tasks can be automated
— For example, using a bin-packing algorithm

» Disadvantages:
Cannot exploit all unused execution time

— Surplus capacity cannot be shared among processors

27 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Partitioned Scheduling

» Complexity of schedulability analysis for partitioned
scheduling:

The problem of deciding whether a task set is schedulable on
m processors with respect to partitioned scheduling is NP-
complete

» Consequence:

There cannot be any pseudo-polynomial time algorithm for
finding an optimal partition of a set of tasks unless P = NP.

28 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Partitioned Scheduling

» Bin-packing algorithms:
The problem concerns packing objects of varying sizes in

boxes ("bins”) with the objective of minimizing number of used
boxes.

» Application to multiprocessor systemes:
Bins are represented by processors and objects by tasks.

The decision whether a processor is "full” or not is derived
from a utilization-based feasibility test.

» Assumptions:
Independent, periodic tasks

Preemptive, uniprocessor scheduling (RM)

29 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Partitioned scheduling

» Bin-packing algorithms
» Rate-Monotonic-First-Fit (RMFF):

Let the processors be indexed as N1, N2, ...

Assign the tasks in the order of increasing periods (that is, RM
order).

For each task i, choose the lowest previously-used processor n
such that i, together with all tasks that have already been
assigned to processor n, can be feasibly scheduled according to
the utilization-based RM-feasibility test.

30 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Global Scheduling

» General characteristics:
All ready tasks are kept in a common (global) queue

When selected for execution, a task can be dispatched to an
arbitrary processor, even after being preempted
Task execution is assumed to be "greedy”:

If higher-priority tasks occupy all processors, a lower-priority task
cannot grab a processor until the execution of a higher priority task is
complete.

31 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Global Scheduling

» Advantages:
Supported by most multiprocessor operating systems
Windows NT, Solaris, Linux, ...
Effective utilization of processing resources

Unused processor time can easily be reclaimed
» Disadvantages:
Weak theoretical framework
Few results from the uniprocessor case can be used

Poor resource utilization for hard timing constraints

No more than 50% resource utilization can be guaranteed

Suffers from several scheduling anomalies

Sensitive to period adjustments

32 Chapter 7: Real-Time Systems on Multi-Cores

2009-4-13

Global Scheduling
» The "root of all evil” in global scheduling: (Liu, 1969)

33

Few of the results obtained for a single processor generalize
directly to the multiple processor case; bringing in additional
processors adds a new dimension to the scheduling problem.
The simple fact that a task can use only one processor even when
several processors are free at the same time adds a surprising
amount of difficulty to the scheduling of multiple processors

Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Global Scheduling

» Dhall’s effect:

With work-conserving scheduling algorithms, some low-
utilization task sets can be unschedulable regardless of how
many processors are used.

» Dependence on relative priority ordering:
Changing the relative priority ordering among higher-priority
tasks may affect schedulability for a lower-priority task.

» Hard-to-find critical instant:

A critical instant does not always occur when a task arrives at
the same time as all its higher-priority tasks’ release time.

34 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Dhall's Effect

Dhall's effect: (Dhall & Liu, 1978) r,={C =271 =1}
7,={C,=2¢T,=1}
t,={C =2¢T,=1}
(RM scheduling) 7,={C,=1LT,=1+¢]

Ty r, misses its deadline

=
B B A
Bl

- o

0 2e 1 1+¢

35 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Dhall's .

Dhall's effect:

e Applies for (greedy) RM, DM and EDF scheduling

wffect

e | east utilization of unschedulable task sets can be arbitrarily

close to 1 no matter how many processors are used.

2€
L

|.

1

1

14+ £

when £ =0

—1

Consequence:
New multiprocessor priority-assignment schemes are needed!

36

Chapter 7: Real-Time Systems on Multi-Cores

2009-4-13

Dhall's Effect

» Problem: RM, DM and EDF only account for task periods!

Actual computation demands are not accounted for.

» Solution: Dhall’s effect can easily be avoided by letting
tasks with high utilization receive higher priority:

R T | 4
A | j@E 1A
3l o a

37 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Priority Assignment

» Impact of relative priority ordering:

The response time of a task depends on the relative priority
ordering of the higher-priority tasks

This property does not exist for a uniprocessor system

This means that well-known uniprocessor methods for finding
optimal priority assignments (for example RM, EDF) cannot be
applied

» Consequence:

New methods for constructing optimal multiprocessor priority
assighments are needed!

38 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Priority Assignment

» Algorithm RM-US[m/(3m-2)]:
RM-US[m/(3m-2)] assigns (static) priorities to tasks according
to the following rule:

l) if U > m/(3m-2) then task i has the highest priority (ties
broken arbitrarily)

2) if U, = m/(3m-2) then task i has RM priority

Clearly, tasks with higher utilization get higher priority

39 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Priority Assignment
» RM-US[m/(3m-2)] example:

As an example of the priorities assigned by

RM-US[m/(3m-2)], consider the following task set to be
scheduled on a system with 3 identical processors:

task | ={C,=I,T,=7} (U,=0.143)
task 2 = {C,=2,T,=10} (U,=0.2)
task 3 = {C,=9,T,=20} (U,=0.45)
task 4 = {C,=11,T,=22} (U,=0.5)
task 5 = {C,=2,T.=25} (U,=0.08)

40 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Priority Assignment
» RM-US[m/(3m-2)] example:

For m-3
m/(3m-2) = 3/7 = 0.4286

Hence, tasks 3 and 4 will be assigned higher priorities, and
remaining tasks will be assigned RM priorities.

The possible priority assignments are therefore as follows
(highest-priority task listed first):
3,4,1,2,5 or 4,3,1,2,5

41 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Priority Assignment

» Processor Utilization analysis for RM-US[m/3m-2]

A sufficient condition for RM-US[m/(3m-2)] scheduling on m
identical processor is

Question: does RM-US[m/(3m-2)] avoid Dhall’s effecit?

42 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Priority Assignment

» Processor Utilization analysis for RM-US[m/3m-2]

43

m’ m

Urs-ustmicm-2y = }Eﬂ 3m-2 3

Regardless of the number of processors, the task set will
always meet its deadlines as long as no more than one third of

the processing capacity is used.

RM-US[m/(3m-2)] thus avoid Dhall’s effect since we can always
add more processors if deadlines were missed.

Note that this remedy was not possible with pure RM.

Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Response Time Analysis

» Response-time analysis for multiprocessors:

Uses the same principle as the uniprocessor case, where the
response time for a task i consists of;

C.:The task’s WCET
l: Interference form higher-priority tasks

R,=C,+1,

The difference with uniprocessor
Unknown critical instant

the calculation of interference now has to account for the fact that
higher-priority tasks can execute in parallel with the analyzed task

44 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Hard-to-Find Critical Instant

response time of r, is maximized for second instance

/
AlAER B AEiERd AR
A

» 45 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Hard-to-Find Critical Instant

» A critical instant does not always occurs when arrives at
the same time as all its higher-priority

» Finding the critical instant is NP-complete

» Note: recall that knowledge about the critical instant is a
fundamental property in uniprocessor feasibility tests

» Consequence: new methods for constructing effective
multiprocessor feasibility tests are needed!

46 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Poor Resource Utilization

» A fundamental limit;

The ulitization guarantee bound for any static-priority
multiprocessor scheduling algorithm can not be higher
than "2 of the capacity of the processors.

» This applies for all types of static-priority scheduling.
(partitioned and global)

» Hence, we can never expect to always utilize more than
half the processing capacity if hard timing constraints
exist

47 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

MP Scheduling Anomalies

» Adding processors and reducing computation times and
other parameters can actually decrease optimal
performance with some scenarios!

» EDF does not suffer from execution-time anomalies, but
does suffer from period anomalies.

48 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Doubling Processor Speed

T 1 | | Y -

2 u —
dmtblf speed .~ deadline miss

T 1 Y >

49 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Anomalies under Resource Constraints

» Task set of five tasks on two processors
» Task 2 and 4 share the a resource in exclusive mode
» Static allocation P1 (1,2) and P2 (3,4,5)

» Reducing the computation time of task | will increase the
optimal schedule time!

critical section

Pl] 2
P2 3 - 5

|
0 2 4 5 3 10 12 14 15 18 20 22

Pl 1 2
2 3 - 5
| |
o2 4 6 8 10 12 14 16 18 20 22

50 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

This Chapter

» Practical Aspect:

Interesting issues of building real time -

systems on multi-core processors

51 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Typical Multicore Architectures

» Niagara

(which is usually considered to be the start of modern

multicore processors)

Shared L2 Cache!
(several banks)

52

4x DDR-2 = 25GB/s (1)
| I N
1
Memory | Memory | Memory | Memory
ctrl ctrl ctrl ctrl
L2 L2 L2

Xbar = 134 GB/s

L1I

L1D
(wt)

-

=
" cpu

'.{i:nn:.:f:})

FP

L1I

L1D

. |(wt)

-

-

-'"'H._
§..(CPU
Lid threads
=0

Chapter 7: Real-Time Systems on Multi-Cores

2009-4-13

Typical Multicore Architectures

» Niagara 2

53

4x DDR-2 = 25GB /s (1)

Memory | Memory | Memory | Memory
ctrl ctrl ctrl ctrl
L2 L2 L2 L2
| Xbar = 134 GB/s |
L1I L1D L1I L1D
(wit) (wt)
() s, (cpu
\(8 threads “& threads
FP[— FP[-

Chapter 7: Real-Time Systems on Multi-Cores

2009-4-13

Typical Multicore Architectures

» TILERA (Network-on-Chips)

54

Tl Py reso

1’7"1’"‘1—-"‘"‘# Core + Swiich = Tile

o e
e e J—
s
P P M)
o |

-
ééij Thee tile is the basic

buibding block

64 cores connected in a mesh
Local L1 + L2 caches

Shared distributed L3 cache
Linux + ANSI C

New Libraries
New IDE

Stream computing

Chapter 7: Real-Time Systems on Multi-Cores

2009-4-13

Typical Multicore Architectures
» AMD Barcelona, 65 nm

Hyper Transport DDR-2
L3 ZMB
X-bar
L2§ 2% L2§ 2%
512xB 512kB 512<B S512kB
D5 15 D% 1% D% = Dt I%
e4kB| |s4kB| |s4kB| |c4kB| |64kB| |s4kB| |64kB| |G4kB
cCPU CPU CPU CPU

Chapter 7: Real-Time Systems on Multi-Cores

2009-4-13

Typical Multicore Architectures

» AMD Shanghai, 45 nm

56

Hyper Transport DDR-2
L3 SAMIE
X-bar

L2% L25 L2% L25
212kB 512kB 312kB 512kB
Ds 15 D% 1% Ds 15 D% 1%
c4kB| [s4kB| |s4kB| [cakB| |s4kB| [s4kB| |s4kB| [64kB

CPLU CPU CPU CPU

Chapter 7: Real-Time Systems on Multi-Cores

2009-4-13

Typical Multicore Architectures

» AMD Istanbul, 45 nm (coming soon)

Hyper Transport DDR-3 277
A
L3 12 MBE
®-bar
L2% L25% L2%
512kB 512kB 512kB
D% 1% D4 1% D% 1% D4 1% D% I$ Ds 1%
s4kB| |s4kB| |s4kB| |s4kB| |s4kB| |sakp| |&4kB| |e4kB| |54kB| [64kB| |s4kB| [s4kB
CPU CPU CPU CPU CPU CPU

from the network, not based on the fact

57 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Typical Multicore Architectures

» Intel Core2 Quad, 45 nm

58

South Bridge | e

North Bridge

Front-side Bus (FSB)

I/C

= DRAM

Die 1
2% L 2%
oMEB oME
e || 1% ns || 1% e || 1% s || 1%
sakB| |6akB| |saxs| |saks| | |saxE| |sakB| |saxs| |saks
CPU CPLU CPLU CPU

Module

Chapter 7: Real-Time Systems on Multi-Cores

2009-4-13

Typical Multicore Architectures

» Intel: Dunnington, 45nm

59

South Bridge

Morth Bridge

I Front-side Bus (FSB)

i

/O

4+ [oam

L3 EBMEBE
X-par
L2% LZ2% 25
ZMB 2ZMBE ZMB
D% 1% D% 1% D% % of | | 18 D& 1% D% 1%
&4kB| [64kB| |64kB| |s4kB| |Saxp| [Baxs| |sakp| |sake| |saxs| [BakB| |SakB| |SakE
CPU CPU CPU CPU CPU CPU

Chapter 7: Real-Time Systems on Multi-Cores

2009-4-13

Typical Multicore Architectures

Intel: Nehalem, Core i7,45 nm

60

I

QuickPath Interconnect

Jx DDR-3

i

L3 S8MB
¥-bar
LZ= L2% L2% L 2% L2%
256kB 256kB 256kB 2568 256kB
Os Ik 3 0% 1% 0% 1% C 15 " BE 3 I%
S4EE| |64KE| |B4kE| |64KE| |e4AkE| |[64kE| |ekB| etk E KR EBAER
CPU, 2 thr] CPU, 2 thr| CPU, 21 thr] |[CPU, 2 thr. CPU

Chapter 7: Real-Time Systems on Multi-Cores

Up to 8 cores x 2 threads

2009-4-13

New Challenges

» Shared Computation Resources
Shared L2 Cache
Shared Bus

» Interference among Cores

61 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Example
» Worst Case Execution Time (WCET)

the foundation of system-level timing analysis schedulability analysis,
response time analysis, ...

cache behavior modeling and analysis
cache hit/miss lead to different execution time for each instruction

well-studied in single-processor systems

62 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Example
» the brief idea of cache analysis

program cache model (LRU) cache miss instruction instruction
penalty * cycles = execution time

P S e iss 4+ 2 = 6
A 4 a
P S —— mIss _________.. z + 3 = 7
A 4 b a
S O —. miss ___________. 4 + 4 = 8
il c|b|a
A hit .. o + 2 = 2
a,
J alc|b
P S —— miss __________.. ! + 1 = 3)
il diajc
e e hit . o + 4 = 4
’ c|d|a
e S —. mIss __________. 4 + 3 = 7
> b|c|d

Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Example

» the typical multi-core architecture

shared L2 cache

Core 1 Core 2 Core 3 Core 4

Private Private Private Private
L1 Cache L1 Cache L1 Cache L1 Cache

Shared L2 Cache

64 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Example

» the typical multi-core architecture

shared L2 cache

o) () () (o

65 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Example

» the typical multi-core architecture

the content belonging to task | may be evicted by the content
belonging to task 2

)
—

66 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Example

» the typical multi-core architecture

the content belonging to task | may be evicted by the content
belonging to task 2

)
—

67 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Example

» for one task

program

shared cache model

penalty +
Y S ? +
222
Y S
?
2[2? *
Y S
2[2 2 *
_________________________ (S +
222
Y S
222 *
Y S +
222
? 7+

Chapter 7: Real-Time Systems on Multi-Cores

cache miss instruction
cycles

2

instruction

execution time

?

2009-4-13

Example

» WCET analysis in presence of shared cache

Cache behavior is more unpredictable

Freely interleaving of instructions on different cores
Precise analysis is extremely difficult

Huge state space

Un-completed information

69 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Solutions?

» cache space isolation to avoid interference between tasks

)
~—

70 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Solutions?

» therefore we can apply traditional WCET analysis

techniques to each task

71

4 O

N N /

Chapter 7: Real-Time Systems on Multi-Cores

/

2009-4-13

Cache Space Isolation

» How to implement Cache Space Isolation?

Hardware-based methods

Software-based methods

Page-coloring

72 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Cache Space Isolation

» Page coloring

Virtual Pages of Process A Virtual Pages of Process B

controlled by
software (OS)

PhysicalPages | B B -

S« 7 = indexed by hardware

L2 Cache

73 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Cache Space Isolation

» Page coloring

address bit-view (Linux + Power 5)

31 15 11 0
L2 Cache .iative
mber
31 15 11 0
Physical _
Memory Physical Page Number Page Offset
4 bits of OS control

16 colors supported
74 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Co-runner

Input every 5 ms Get result before the next input

| >[FuncA}' =

Input every 10 ms Get result before the next input

Input every 15 ms Get result before the next input

ST Rmes T
[Rnec [T T
-
Ged

75 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

Co-runner

-

A

~

A

4

!

A6

A

5

-

-

~

N

™

/

-

FUnC C

~

miba

o

/

Chapter 7: Real-Time Systems on Multi-Cores

2009_4_ I 3

Co-runner

» the cache (memory) requirement of executing

LA BB (%KD

is higher than running

» the concept of
“good” co-runner

“bad” co-runner

77 Chapter 7: Real-Time Systems on Multi-Cores 2009-4-13

	Chapter 7� Real-time Systems on Multi-Cores
	Let’s begin with an oooooold story
	Let’s begin with an oooooold story
	Let’s begin with an oooooold story
	Let’s begin with an oooooold story
	Let’s begin with an oooooold story
	Open Question:
	Welcome to the Cruel Multi-core World!
	Welcome to the Cruel Multi-core World!
	Welcome to the Cruel Multi-core World!
	Multi-core is Booming
	Everyone is doing it!
	This Chapter
	This Chapter
	Task Model
	Multiprocessor Model
	Multiprocessor Model
	Multiprocessor Model
	Multiprocessor Model
	Multiprocessor Model
	Multiprocessor Model
	Classification of Multiprocessor Scheduling
	Classification
	Classification
	Classification
	Classification
	Partitioned Scheduling
	Partitioned Scheduling
	Partitioned Scheduling
	Partitioned scheduling
	Global Scheduling
	Global Scheduling
	Global Scheduling
	Global Scheduling
	Dhall’s Effect
	Dhall’s Effect
	Dhall’s Effect
	Priority Assignment
	Priority Assignment
	Priority Assignment
	Priority Assignment
	Priority Assignment
	Priority Assignment
	Response Time Analysis
	Hard-to-Find Critical Instant
	Hard-to-Find Critical Instant
	Poor Resource Utilization
	MP Scheduling Anomalies
	Doubling Processor Speed
	Anomalies under Resource Constraints
	This Chapter
	Typical Multicore Architectures
	Typical Multicore Architectures
	Typical Multicore Architectures
	Typical Multicore Architectures
	Typical Multicore Architectures
	Typical Multicore Architectures
	Typical Multicore Architectures
	Typical Multicore Architectures
	Typical Multicore Architectures
	New Challenges
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Solutions?
	Solutions?
	Cache Space Isolation
	Cache Space Isolation
	Cache Space Isolation
	Co-runner
	Co-runner
	Co-runner

