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Let’s begin with an oooooold story
 once upon a time . . . . . .
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Let’s begin with an oooooold story
 there was a monk . . . . . .
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Let’s begin with an oooooold story
 then comes another monk . . . . . .
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Let’s begin with an oooooold story
 then comes the third monk . . . . . .
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Let’s begin with an oooooold story
 What do we learn?

More workers may lead to less production, if they 
can not cooperate well!
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Open Question:
 What happens if there are 400 monks?
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... ...
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Welcome to the Cruel Multi-core World!
 Have you heard that an application running on a dual-core 

chip can be actually slower than running on only one of them?

<
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Welcome to the Cruel Multi-core World!
 Have you heard that an application running on a dual-core 

chip can be actually slower than running on only one of the 
two cores?

 Unfortunately, that’s a real story. 
according to a case-study of ABB robotic production application

<
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Welcome to the Cruel Multi-core World!
 Today, PicoChip is selling chips with more than 400 DSP 

cores on it.

 Anant Agarwal (CEO of Tilera, also a professor in MIT) predicates there 
will be more than 4000 cores on embedded processor 
chips by 2017.

 . . . . . .
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Multi-core is Booming
 for higher performance, lower power consumption, lower 

cost, smaller size … …
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Everyone is doing it!
 “Intel have 10 projects in the works that contain four or more computing 

cores per chip”
[Paul Otellini, Intel Chief Executive at IDF fall 2005]

 “Today, processors with multiple CPUs and a large cache on a single chip 
are becoming common.

 Attempts to tease the parallelism out of a sequential program 
automatically haven’t worked out very well.

 We need better education, better languages, and better tools, since 
building concurrent programs is hard”

 [Andrew Herbert, Director of Microsoft Cambridge Research Lab, 
May 2005]
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This Chapter

 Theoretic Aspect: 
Multiprocessor scheduling foundations
( boring, but important to get insights! )

 Practical Aspect: 
Interesting issues of building real time systems on multi-
core processors
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This Chapter

 Theoretic Aspect: 
Multiprocessor scheduling foundations
( boring, but important to get insights! )

 Practical Aspect: 
Interesting issues of building real time systems on multi-
core processors
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Task Model
 Independent periodic task set: n tasks
 For each task ti:
 Ci: execution time
 Di: relative deadline
 Ti: period

 Each task consists of a (infinite)  sequence of jobs
For each job jik (the kth job of task ti):
 ri: release time 
 di: relative deadline
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Multiprocessor Model
 m processors

 Identical multiprocessors:
 each processor has the same computing capacity 

 Uniform multiprocessors:
 different processors have different computing capacities

 Heterogeneous multiprocessors:
 each (task, processor) pair may have a different computing 

capacity
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Multiprocessor Model

P1 P2 P3

F
raction of com

puting capacity
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Multiprocessor Model
 Identical multiprocessors:

each processor has the same computing capacity

P1 P2 P3

Task T1 Task T2
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Multiprocessor Model
 Uniform multiprocessors: 

different processors have different computing capacities

Task T1 Task T2

P1 P2 P3

x
x/2 x/3

y y/2 y/3

speed = 1 speed = 2 speed = 3
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Multiprocessor Model
 Heterogeneous multiprocessors: 

each (task, processor) pair may have a different computing 

capacity
Task T1 Task T2

P1 P2 P3
x/2 x/3

x

y

1.5 y

y
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Multiprocessor Model
 Why study heterogeneous multiprocessors: 

 systems synthesized using specialized COTS processors

x/2 x/3

x

CPU DSP chip Graphics co-processor

Graphics-intensive task Number-crunching task

x/2 x/3

y

1.5 y
y

Task T1 Task T2
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Classification of Multiprocessor Scheduling
 According to migration:

 Partitioned scheduling (no-migration)
 Each task may only execute on a specific processor

 Global scheduling (full-migration)
 Any task’s job may execute on any processor

 Middle approach (restrict-migration)
 Each job is assigned to a single processor, while a task is allowed to 

migrate. 
 In other words, inter-processor task migration is permitted only at job 

boundaries.

2009-4-1322 Chapter 7: Real-Time Systems on Multi-Cores



Classification
 According to migration:
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Classification
 According to priority assignment
 Static priorities

 A unique priority is associated with each task, and all jobs generated 
by a task have the priority associated with that task

 E.g. RM

 Job-level dynamic priorities: 
 For every pair of jobs Ji and Jj , if Ji has higher priority than Jj at some 

instant in time, then Ji always has higher priority than Jj .
 EDF: proven optimal for uniprocessor scheduling

 Unrestricted dynamic priorities
 Relative priority of two jobs may change at any time.
 LLF: more optimal than EDF for MP scheduling
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Classification

1: static
2: job-level 

static
3: full dynamic

1: partitioned (1, 1) (1, 2) (1,3)

2: restrict  
migration

(2,1) (2,2) (2,3)

3: full migration (3,1) (2,3) (3,3)
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Classification
 Work-conserving scheduling
 a processor is never left idle while an active job exists
 e.g. Global EDF, Global RM, . . .

 Non-conserving scheduling
 a processor could be idle while an active job exists
 e.g. Restrict-migrate EDF, Partitioned EDF, . . .
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Partitioned Scheduling
 Advantages:
 Mature scheduling framework
 – Most scheduling theory pertaining to uniprocessor 

scheduling are also applicable here
 – Uniprocessor resource-management protocols can be used

 Partitioning of tasks can be automated
 – For example, using a bin-packing algorithm

 Disadvantages:
 Cannot exploit all unused execution time

 – Surplus capacity cannot be shared among processors
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Partitioned Scheduling
 Complexity of schedulability analysis for partitioned 

scheduling:
 The problem of deciding whether a task set is schedulable on 

m processors with respect to partitioned scheduling is NP-
complete 

 Consequence:
 There cannot be any pseudo-polynomial time algorithm for 

finding an optimal partition of a set of tasks unless P = NP.

2009-4-1328 Chapter 7: Real-Time Systems on Multi-Cores



Partitioned Scheduling
 Bin-packing algorithms:
 The problem concerns packing objects of varying sizes in 

boxes (”bins”) with the objective of minimizing number of used 
boxes.

 Application to multiprocessor systems:
 Bins are represented by processors and objects by tasks.
 The decision whether a processor is ”full” or not is derived 

from a utilization-based feasibility test.

 Assumptions:
 Independent, periodic tasks
 Preemptive, uniprocessor scheduling (RM)
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Partitioned scheduling
 Bin-packing algorithms
 Rate-Monotonic-First-Fit (RMFF): 
 Let the processors be indexed as N1, N2, …
 Assign the tasks in the order of increasing periods (that is, RM 

order).
 For each task i, choose the lowest previously-used processor n 

such that i, together with all tasks that have already been 
assigned to processor n, can be feasibly scheduled according to 
the utilization-based RM-feasibility test.

2009-4-1330 Chapter 7: Real-Time Systems on Multi-Cores



Global Scheduling
 General characteristics:
 All ready tasks are kept in a common (global) queue
 When selected for execution, a task can be dispatched to an 

arbitrary processor, even after being preempted
 Task execution is assumed to be ”greedy”:

 If higher-priority tasks occupy all processors, a lower-priority task 
cannot grab a processor until the execution of a higher priority task is 
complete.

2009-4-1331 Chapter 7: Real-Time Systems on Multi-Cores



Global Scheduling
 Advantages:
 Supported by most multiprocessor operating systems

 Windows NT, Solaris, Linux, ...

 Effective utilization of processing resources
 Unused processor time can easily be reclaimed

 Disadvantages:
 Weak theoretical framework

 Few results from the uniprocessor case can be used

 Poor resource utilization for hard timing constraints
 No more than 50% resource utilization can be guaranteed

 Suffers from several scheduling anomalies
 Sensitive to period adjustments
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Global Scheduling
 The ”root of all evil” in global scheduling: (Liu, 1969)

Few of the results obtained for a single processor generalize 
directly to the multiple processor case; bringing in additional 
processors adds a new dimension to the scheduling problem. 
The simple fact that a task can use only one processor even when 
several processors are free at the same time adds a surprising 
amount of difficulty to the scheduling of multiple processors
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Global Scheduling
 Dhall’s effect:
 With work-conserving scheduling algorithms, some low-

utilization task sets can be unschedulable regardless of how 
many processors are used.

 Dependence on relative priority ordering:
 Changing the relative priority ordering among higher-priority 

tasks may affect schedulability for a lower-priority task.

 Hard-to-find critical instant:
 A critical instant does not always occur when a task arrives at 

the same time as all its higher-priority tasks’ release time.
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Dhall’s Effect
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Dhall’s Effect
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Dhall’s Effect
 Problem: RM, DM and EDF only account for task periods!
 Actual computation demands are not accounted for.

 Solution: Dhall’s effect can easily be avoided by letting 
tasks with high utilization receive higher priority:
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Priority Assignment
 Impact of relative priority ordering:
 The response time of a task depends on the relative priority 

ordering of the higher-priority tasks
 This property does not exist for a uniprocessor system
 This means that well-known uniprocessor methods for finding 

optimal priority assignments (for example RM, EDF) cannot be 
applied

 Consequence:
 New methods for constructing optimal multiprocessor priority 

assignments are needed!
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Priority Assignment
 Algorithm RM-US[m/(3m-2)]:
 RM-US[m/(3m-2)] assigns (static) priorities to tasks according 

to the following rule:
1) if Ui > m/(3m-2) then task i has the highest priority (ties 
broken arbitrarily)
2) if Ui ≤ m/(3m-2) then task i has RM priority

 Clearly, tasks with higher utilization get higher priority
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Priority Assignment
 RM-US[m/(3m-2)] example:
 As an example of the priorities assigned by 

RM-US[m/(3m-2)], consider the following task set to be 
scheduled on a system with 3 identical processors:
task 1 = {C1=1, T1=7}     (U1=0.143)
task 2 = {C2=2, T2=10} (U2=0.2)
task 3 = {C3=9, T3=20} (U3=0.45)
task 4 = {C4=11, T4=22} (U4=0.5)
task 5 = {C5=2, T5=25} (U5=0.08)
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Priority Assignment
 RM-US[m/(3m-2)] example:
 For m-3

m/(3m-2) = 3/7 ≈ 0.4286

 Hence, tasks 3 and 4 will be assigned higher priorities, and 
remaining tasks will be assigned RM priorities.

 The possible priority assignments are therefore as follows 
(highest-priority task listed first):
3, 4, 1, 2, 5      or      4, 3, 1, 2, 5
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Priority Assignment
 Processor Utilization analysis for RM-US[m/3m-2]
 A sufficient condition for RM-US[m/(3m-2)] scheduling on m 

identical processor is

 Question: does RM-US[m/(3m-2)] avoid Dhall’s effecit?
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Priority Assignment
 Processor Utilization analysis for RM-US[m/3m-2]

 Regardless of the number of processors, the task set will 
always meet its deadlines as long as no more than one third of 
the processing capacity is used.

 RM-US[m/(3m-2)] thus avoid Dhall’s effect since we can always 
add more processors if deadlines were missed.

 Note that this remedy was not possible with pure RM.
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Response Time Analysis
 Response-time analysis for multiprocessors:
 Uses the same principle as the uniprocessor case, where the 

response time for a task i consists of;
Ci: The task’s WCET
Ii: Interference form higher-priority tasks

 The difference with uniprocessor
 Unknown critical instant
 the calculation of interference now has to account for the fact that 

higher-priority tasks can execute in parallel with the analyzed task
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Hard-to-Find Critical Instant
 with RM scheduling
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Hard-to-Find Critical Instant
 A critical instant does not always occurs when arrives at 

the same time as all its higher-priority
 Finding the critical instant is NP-complete
 Note: recall that knowledge about the critical instant is a 

fundamental property in uniprocessor feasibility tests

 Consequence: new methods for constructing effective 
multiprocessor feasibility tests are needed!
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Poor Resource Utilization
 A fundamental limit:

The ulitization guarantee bound for any static-priority 
multiprocessor scheduling algorithm can not be higher 
than ½ of the capacity of the processors.

 This applies for all types of static-priority scheduling. 
(partitioned and global)

 Hence, we can never expect to always utilize more than 
half the processing capacity if hard timing constraints 
exist
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MP Scheduling Anomalies
 Adding processors and reducing computation times and 

other parameters can actually decrease optimal 
performance with some scenarios!

 EDF does not suffer from execution-time anomalies, but 
does suffer from period anomalies.
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Doubling Processor Speed
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Anomalies under Resource Constraints
 Task set of five tasks on two processors
 Task 2 and 4 share the a resource in exclusive mode
 Static allocation P1 (1,2) and P2 (3,4,5)
 Reducing the computation time of task 1 will increase the 

optimal schedule time!

2009-4-1350 Chapter 7: Real-Time Systems on Multi-Cores



This Chapter

 Theoretic Aspect: 
Multiprocessor scheduling foundations
( boring, but important to get insights! )

 Practical Aspect: 
Interesting issues of building real time 
systems on multi-core processors
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Typical Multicore Architectures
 Niagara

(which is usually considered to be the start of modern 
multicore processors)

Shared L2 Cache!
(several banks)
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Typical Multicore Architectures
 Niagara 2

2009-4-1353 Chapter 7: Real-Time Systems on Multi-Cores



Typical Multicore Architectures
 TILERA (Network-on-Chips)
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Typical Multicore Architectures
 AMD Barcelona, 65 nm
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Typical Multicore Architectures
 AMD Shanghai, 45 nm
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Typical Multicore Architectures
 AMD Istanbul, 45 nm (coming soon)

from the network, not based on the fact
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Typical Multicore Architectures
 Intel Core2 Quad, 45 nm
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Typical Multicore Architectures
 Intel: Dunnington, 45nm
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Typical Multicore Architectures
 Intel: Nehalem, Core i7, 45 nm
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New Challenges
 Shared Computation Resources
 Shared L2 Cache
 Shared Bus

 Interference among Cores
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Example
 Worst Case Execution Time (WCET) 
 the foundation of system-level timing analysis schedulability analysis, 

response time analysis, …

 cache behavior modeling and analysis
 cache hit/miss lead to different execution time for each instruction
 well-studied in single-processor systems
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Example
 the brief idea of cache analysis

b ;

a ;

program cache model (LRU)

c ;

a ;

d ;

c ;

b;

a

b a

c b a

a c b

d a c

c d a

b c d

miss

miss

miss

hit

miss

hit

miss

4 +        2         =          6

4 +        3         =          7

4 +        4         =          8

0 +        2         =          2

4 +        1         =          5

0       +        4         =          4

4 +        3         =          7

instruction 
cycles

cache miss 
penalty + =

instruction 
execution time
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Example
 the typical multi-core architecture
 shared L2 cache 

Private
L1 Cache

Private
L1 Cache

Private
L1 Cache

Private
L1 Cache

Shared L2 Cache

Core 1 Core 2 Core 3 Core 4
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Example
 the typical multi-core architecture
 shared L2 cache 

Task 1 Task 2 Task 3 Task 4
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Example
 the typical multi-core architecture
 the content belonging to task 1 may be evicted by the content 

belonging to task 2

Task 1 Task 2 Task 3 Task 4
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Example
 the typical multi-core architecture
 the content belonging to task 1 may be evicted by the content 

belonging to task 2

Task 1 Task 2 Task 3 Task 4
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Example
 for one task 

b ;

a ;

program shared cache model

c ;

a ;

d ;

c ;

b ;

?

?

?

?

?

?

?

? +        2         =          ?

? +        3         =          ?

? +        4         =          ?
? +        2         =          ?

? +        1         =          ?
? +        4         =          ?

? +        3         =          ?

instruction 
cycles

cache miss 
penalty + =

instruction 
execution time

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?
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Example
 WCET analysis in presence of shared cache

 Cache behavior is more unpredictable
 Freely interleaving of instructions on different cores

 Precise analysis is extremely difficult
 Huge state space
 Un-completed information
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Solutions?
 cache space isolation to avoid interference between tasks

Task 1 Task 2 Task 3 Task 4

2009-4-1370 Chapter 7: Real-Time Systems on Multi-Cores



Solutions?
 therefore we can apply traditional WCET analysis 

techniques to each task

Task 1 Task 2 Task 3 Task 4
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Cache Space Isolation
 How to implement Cache Space Isolation?
 Hardware-based methods

 Software-based methods
 Page-coloring
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Cache Space Isolation
 Page coloring

… …

Virtual Pages of Process A Virtual Pages of Process B

Physical Pages

… … … …

L2 Cache

controlled by 
software (OS)

indexed by hardware
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Cache Space Isolation
 Page coloring
 address bit-view (Linux + Power 5)

L2 Cache

Physical 
Memory

4 bits of OS control

31 15 11 0

31 15 11 0

Associative 
set number

Physical Page Number Page Offset

16 colors supported
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Co-runner

Input every 5 ms
Func A

Func B

Func C

Input every 10 ms

Input every 15 ms

Get result before the next input

Get result before the next input

Get result before the next input
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Co-runner

Func A

A1

A2

A4

A6
A5

A7

A3

Func B

B1

B2
B4

B5

B3

Func C

C1

C2

C3 C4

C5

2009-4-1376 Chapter 7: Real-Time Systems on Multi-Cores



Co-runner
 the cache (memory) requirement of executing 

is higher than running

 the concept of 
“good” co-runner
“bad” co-runner

Ai Bj Ck

Ai Aj Ak
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