
Introduction to Computational Complexity

(Lecture Notes for a 5-day Graduate Course)

Martin Stigge, martin.stigge@it.uu.se
Uppsala University, Sweden

July 9, 2009

Contents

1 Introduction 2
1.1 About this document . 2
1.2 What is Computational Complexity? 2

2 Basic Computability Theory 4
2.1 Problems as Formal Languages 4
2.2 Model of Computation: Turing Machines 5
2.3 Decidability, Undecidability, Semi-Decidability 11
2.4 The Halting Problem . 12
2.5 More Undecidability . 14

3 Complexity Classes 19
3.1 Landau Symbols: The O(·) Notation 19
3.2 Time and Space Complexity 20
3.3 Relations between Complexity Classes 23

4 Feasible Computations: P vs. NP 27
4.1 Proving vs. Verifying . 27
4.2 Reductions, Hardness, Completeness 31
4.3 Natural NP-complete problems 34
4.4 Beyond NP-completeness . 44

5 Advanced Complexity Concepts 47
5.1 Non-uniform Complexity . 47
5.2 Probabilistic Complexity Classes 49
5.3 Interactive Proof Systems . 55

A Appendix 60
A.1 Exercises . 60
A.2 Further reading . 61

2

1 Introduction

1.1 About this document

These lecture notes are part of a graduate course given in 2009 at North-
eastern University in Shenyang, China. The course is directed at graduate
students in the field of computer science or engineering who want to learn
more about theoretic models of computation and complexity. The material
was planned to be covered during 5 days with 2 lectures every day. It is
supposed to be mostly self-contained, assuming only basic knowledge about
formal notations used in mathematics and theoretical computer science. All
more advanced concepts are defined and explained in detail.

In preparation for the course, lecture notes from Viggo Stoltenberg-
Hansen (Uppsala University, Sweden), Oded Goldreich (Weizmann Institute
of Science, Israel) and Johannes Köbler (Humboldt University Berlin, Ger-
many) were sources of inspiration, as well as the books on Computational
Complexity by Christos Papadimitriou [Pap94] and Daniel Bovet / Pierluigi
Crescenzi [BC93], who should all be credited explicitly.

1.2 What is Computational Complexity?

Complexity theory addresses the study of the intrinsic complexity of com-
putational tasks. The “ultimate goal” is to judge for every well-defined task,
how complex it is to solve it, i.e., how many resources and how much time
is needed – at most and at least – to perform the given task. While this can
be seen as an absolute answer, also relative answers are interesting: How do
different tasks relate to each other in their complexity? Are some always
more difficult than others, no matter how we model them? How do time
and resources relate to each other? Are there “most difficult” problems? To
study these questions, the first step is to have a precise understanding of
what it means to perform a task, to solve a problem.

This basis is provided by a field that is very closely connected and is
called computability theory. It studies, which functions are algorithmically
computable, i.e., given a reasonable model of computation, what can (at all)
algorithmically be computed? How do we model computation? What is an
algorithm? And what does it mean to “solve” a problem? Computability
theory doesn’t just provide the formal and mathematically rigorous founda-
tions for related areas like complexity theory, but it provides results that are
very interesting on their own. A prominent example is the existence of prop-
erties of programs that are impossible to verify algorithmically. We explore
some of these results together with the necessary foundations in Chapter 2.

Based on these foundations, we turn to a general introduction to com-
plexity theory in Chapter 3. The main incentive of this chapter is to in-
troduce the reader to classical notions of complexity classes, both concern-
ing restrictions of time and space for computations. We study how space

1.2 What is Computational Complexity? 3

and time restrictions relate to each other, as well as the relation between
determinism and non-determinism. The latter one concerns one of the fun-
damental questions of theoretical computer science: Is it more difficult to
come up with a solution than to verify the validity of a given solution? This
question manifests itself in the famous P

?= NP problem and demonstrates
the failure of complexity theory to provide “absolute” answers, even though
at the same time, it created strong and important frameworks for results of
the “relative” kind.

This question is so fundamental and its answer so surprisingly difficult,
that we study it to a deeper extend in Chapter 4. We provide alternative
characterizations of the problem and introduce some classical examples to il-
lustrate the fundamental nature of this specific problem. The perhaps most
insightful result is concerned with the notion of completeness, which ex-
presses the existence of “most difficult” problems. We conclude the chapter
with an overview of prominent NP-complete problems, which are of impor-
tance for most areas of computer science, both in theory and in practice.

In Chapter 5, we conclude this course with a short tour through three
advanced concepts that are of great interest in complexity theory: Non-
uniformity, randomization and interaction. We provide some basic overview,
but don’t go too much into detail.

The document further contains an appendix with a list of exercises that
should invite the interested reader to hands-on application of the presented
knowledge. The appendix also includes selected material for deepening the
knowledge in all areas presented during the course.

4

2 Basic Computability Theory

We start with an introduction into computability theory. The goal of this
area is to find the borders of what can be algorithmically done, i.e., by some
machine or someone following a precise description of a task, and what can
actually not be done. To study the questions of interest in a formal way, it
is necessary to first define formally what we actually mean by a “problem”
and what a “computation” actually is.

2.1 Problems as Formal Languages

At the most abstract level, the setting we want to work with can be described
as depicted in Figure 1: A machine gets a problem instance as input and
will produce a solution at its output. Thus, there must be some kind of
agreement about the format of input and output. In theoretical computer
science, one uses the simple but powerful concept of formal languages.

Machine
Input Output

Figure 1: Most abstract modelling level

The most basic ingredient is a finite set Σ = {σ1, . . . , σk} of symbols,
the alphabet. A word w over Σ is a tuple w = (w1, . . . , wl) of symbols from
Σ, i.e., ∀i : wi ∈ Σ. We denote the length l of the word w with |w| and the
(unique) empty word with ε. The set of words of length n is denoted with
Σn while Σ∗ :=

⋃
n≥0 Σn is the set of all (finite) words. A formal language

L over Σ is a set of words from Σ∗, i.e., L ⊆ Σ∗. Usual set operations can
be applied to languages L1 and L2 (over Σ1 and Σ2), like union (L1 ∪ L2),
intersection (L1∩L2) and difference (L1−L2). Additionally, we write L1L2

for the concatenation L1 and L2, containing all words w having a prefix w1

from L1 and the corresponding suffix w2 from L2:

L1L2 := {w | ∃w1 ∈ L1, w2 ∈ L2 : w = w1w2}

Note that the results of all operations are languages over Σ1 ∪ Σ2.
We can now use this concept in the above setting: Input and output of

the machine will be encoded into words over Σ. We consider two examples.

Example 2.1. Let Σ := {0, 1, . . . , 9}, and let [n]10 denote the decimal repre-
sentation of the natural number n. Then NAT := {[n]10 | n ∈ N} represents
all natural numbers. A machine that calculates the square of a number n
gets w := [n]10 ∈ Σ∗ as input and will output a word v ∈ Σ∗ with v = [n2]10.

2.2 Model of Computation: Turing Machines 5

Example 2.2. As a second example, take Σ as before, and let PRIMES :=
{[p]10 | p is a prime number}. Obviously1, PRIMES (NAT. A machine to
check the primality of a number n will get [n]10 as an input and will output
1 if n is prime, and 0 otherwise. This is our first example of a decision
problem. The set PRIMES is the set of positive instances of the problem,
out of the set NAT of all possible inputs. The machine is supposed to correctly
distinguish positive from negative instances.

2.2 Model of Computation: Turing Machines

After defining the format of input and output, we also need to develop a
formal notion of a “machine”. It should be a model that captures what we
perceive as being “algorithmically computable” by a finite number of actions.
But what exactly does this mean? What are actions? Over time, theoreti-
cal computer scientists (in former times still being called mathematicians),
have developed many distinct models of computation. Recursive functions,
rewriting systems and Turing machines are only a few prominent examples
for such unrestricted models of computation.

It turns out that in spite of many efforts, researchers were not able to
come up with models that are more expressive than these. In fact, all pro-
posed models have been proven to be equivalent in terms of expressiveness.
Even though it has not been proven that a more powerful model can not
exist, it is widely believed that whatever problems are “solvable”, they can
be solved using any of the mentioned formalisms. This popular conjecture
is called Church’s Thesis.

The model we will focus on is the Turing machine. For computability
theory as well as complexity theory, this model has been adopted as the
standard model because of its simplicity. It can be seen as a primitive version
of an idealised computer and consists of the following (c.f. Figure 2):

q

. a a a bbac c2 2

tape

read/write head
state

Figure 2: A Turing Machine

• A tape used for input, storage and output. The tape consists of
squares, each with the capability to store one symbol from a work-
ing alphabet Γ. The tape is not bounded a priori.

1With A (B we denote strict inclusion: A ⊆ B ∧ A 6= B.

2.2 Model of Computation: Turing Machines 6

• A read/write head that can move stepwise across the tape, changing
its symbols one at a time.

• A finite state machine. The set of states includes a designated initial
state q0 and a set of final states F .

At the beginning of the machines operation, it is in state q0 and the tape
contains an input word over an alphabet Σ. (Thus, Σ (Γ.) All other
positions of the tape contain a special symbol 2 ∈ Γ called the blank symbol.2

The machine proceeds step-wise. During each step, it reads the symbol at
the current position of the tape. Depending on that symbol and the current
state, the machine writes a new symbol, changes its state, and does a head
move by at most one position in either direction. This procedure is repeated
until the machine enters one of the final states in F . The machine then
simply stops, and the contents of the tape are the output of the machine.

We now give a formal definition.

Definition 2.3 (Turing Machine). A Turing machine M is a five-tuple
M = (Q,Γ, δ, q0, F) where

Q is a finite set of states;

Γ is the tape alphabet including the blank: 2 ∈ Γ;

q0 is the initial state, q0 ∈ Q;

F is the set of final states, F ⊆ Q;

δ is the transition function, δ : (Q− F)× Γ→ Q× Γ× {R,N,L}.

The transition function δ takes a non-final state and a tape symbol as
arguments. Given those, it returns the action that the Turing machine
will execute when this combination is encountered: the new state, the tape
symbol to be written, and the movement of the head, where R, N and L
symbolize “right”, “no move” and “left”, respectively. Note that by this
definition, a machine can never “get stuck” in a non-final state, i.e., it can
always execute another step.

We would also like to formally capture the global status of a Turing
machine at each computation step, i.e., the state together with the contents
of its tape. We call this a configuration of the machine and express it as a
tuple (w, q, v) ∈ Γ∗ × q × Γ∗. This is to be read as: The tape contains wv
with infinitely many 2 to the left and right of it; the machine’s state is q
and the head is over the first symbol of v. (If v = ε then the head is on the
first position to the right of w.) See Figure 3.

The start configuration of a machine M with an input word w is thus
(ε, q0, w) and the execution halts as soon as a configuration (v, q, z) is reached

2In fact, at any time, all but finitely many positions of the tape will be blank.

2.2 Model of Computation: Turing Machines 7

q

. a a a bbac c2 2

wz }| { vz }| {

Figure 3: Turing machine configuration (w, q, v) with w = cab and
v = aaabc

with arbitrary v, z ∈ Γ∗ and q ∈ F . By convention, we let z be the output
of M , which we also denote3 with M(w). In case M does not halt given
input w, we write M(w) =↗.

Using this notation of configurations, we may also define the step relation
formally, i.e., the execution of one step of the machine.

Definition 2.4 (Step Relation). Given a Turing machine M = (Q,Γ, δ, q0, F),
we define ` for all w, v ∈ Γ∗, a, b ∈ Γ and q ∈ Q as:

(wa, q, bv) `

(wac, p, v) if δ(q, b) = (p, c, R),
(wa, p, cv) if δ(q, b) = (p, c,N),
(w, p, acv) if δ(q, b) = (p, c, L).

This just formalizes the intuitive explanation of the TM’s execution. We
further use `n to relate configurations reachable in n steps (where n = 0 is
possible), and `∗ for all reachable configurations.

2.2.1 The Universal Machine

We have seen that the introduced model of a Turing machine is relatively
simple in the sense that it contains simple rules which – in principle – could
be easily simulated by a human, given enough pencils, tape space and pa-
tience. One of the fundamental results (originally by Alan Turing) is, that
there are even Turing machines that can simulate all other Turing machines.
In a modern view, this could be regarded as the existence of a general pur-
pose computer.

The key idea is that Turing machines are finite objects. Thus, using
an appropriate coding, each Turing machine can be effectively encoded into
a finite word over some fixed alphabet (just like the binary encoding of
computer programs in modern computers). Also all reachable configurations
are finite words. Therefore, without going too much into detail, one can
imagine a machine U that gets the encoding of another machine M as an
input, together with a word w that is supposed to be the input of M . It

3We also sometimes just write M(z) to denote the computation of M on input z, but
this won’t introduce confusion since it will be clear from the context.

2.2 Model of Computation: Turing Machines 8

then proceeds by simulating M with input w by maintaining an encoded
version of M ’s configuration and carefully applying each step of M .

Using 〈M〉 to denote the encoding of a Turing machine M , we can state
this result as the following theorem.

Theorem 2.5 (The Universal Machine). There exists a universal Tur-
ing machine U , such that for all Turing machines M (with the same in-
put/output alphabet Σ) and all words w ∈ Σ∗ the following holds:

U(〈M〉, w) = M(w)

In particular, U does not halt iff4 M does not halt.
(Without proof.)

2.2.2 Extensions

We will now take a look at alternative definitions and extensions of the
Turing machine model.

Transducers and Acceptors: The model as defined above gets a word
as input and produces a word as output. We can therefore interpret a Turing
Machine M as a function from words to words over the alphabet Σ and call
it a transducer. A function for which such a transducer exist, is called a
computable function. Note that for some input words, the transducer may
not terminate. In that case, the function is undefined for these arguments
and is thus a partial function (as opposed to a total function if it is defined
for all arguments).

On the other hand, if we are interested in decision problems, i.e., whether
a certain input word w belongs to a decision problem L or not, then it is
sufficient to consider two possible outputs: a positive (in case w ∈ L) and a
negative (in case w /∈ L). Equivalently, one often defines Turing machines
for this scenario as having exactly two final states: qyes and qno. With this
definition, the tape contents after the machine halts doesn’t matter – the
answer is represented by the final state. Such a Turing machine is called
an acceptor, see Figure 4, and we denote the language accepted by M with
L(M):

L(M) := {w ∈ Σ∗ | ∃y, z ∈ Γ∗ : (ε, q0, w) `∗ (y, qyes, z)

For the rest of the course, we will mostly deal with acceptors and decision
problems.

4“if and only if”

2.2 Model of Computation: Turing Machines 9

“no”

“yes”

AcceptorTransducerw z w

Figure 4: Transducers versus Acceptors

Multiple Tapes: We defined Turing machines with one tape. Sometimes
the model is defined using k tapes (for any k), each one with its own tape
head. It is also common to use one of them as a designated input tape,
which is read-only and contains the input of the machine, and another one
as a designated output tape, which is only allowed to be used for writing
down the result right before halting and will then contain the output of the
machine. See Figure 5.

.

.

.

.

. . .

output tape (write only)

input tape (read only)

k working tapes

Figure 5: A Turing Machine with multiple tapes

This model is equivalent to the one we defined, in the sense that a 1-
tape TM for a problem exists if and only a k-tape TM exists. That can
be easily shown by encoding a “column” of tape squares from all k tapes
into just one square of the 1-tape TM and using markers for the k tape
heads. (Note that k is a fixed number and thus can not depend on the input
size!) One advantage of using the extended model is that one can express
certain actions more easily, like “remember this string on an extra tape
before proceeding”). Another advantage is, that its easier to specify exactly,
how much extra space the machine uses, apart from input and output space.
This is important when we later define space-restricted complexity classes,
that find their applications in modelling of memory-restricted setting.

Non-determinism: Our Turing machine model in Definition 2.3 is deter-
ministic. This means that each configuration has exactly one possibility for
the next step, which directly defines the next configuration. An extension
of this model is to introduce non-determinism. At each step, the machine

2.2 Model of Computation: Turing Machines 10

is allowed to choose between different alternatives of what to do next. For
that, the transition function δ doesn’t just return one tuple representing the
next step, but a set of possible steps:

δ : (Q− F)× Γ→ P(Q× Γ× {R,N,L})

We call such a machine a Non-deterministic Turing machine (NTM). Using
this definition, the step relation can be defined accordingly:

(wa, q, bv) ` (wac, p, v) for all (p, c, R) ∈ δ(q, b),
(wa, q, bv) ` (wa, p, cv) for all (p, c,N) ∈ δ(q, b),
(wa, q, bv) ` (w, p, acv) for all (p, c, L) ∈ δ(q, b).

The question remains, how a computation of such a machine actually looks
like. Note that this is a theoretical model which is not supposed to resemble
the behaviour of a real machine. One can imagine the computation as a tree
in which the possible configurations are the nodes and the start configuration
is the root, see Figure 6. (For a deterministic machine, this tree is just a
line.)

Deterministic machine

“yes”

Non-deterministic machine

“no”

“no”

“no”

“yes”

“yes”

Figure 6: Computation trees of deterministic and non-deterministic
computations

We only define the behaviour of a non-deterministic acceptor, i.e., a
machine that either accepts or rejects a word. We define that a word w
is accepted by a non-deterministic TM M , if there is a finite computation
path in the computation tree leading to the accepting state qyes. Thus, the
accepted language is defined as before:

L(M) := {w ∈ Σ∗ | ∃y, z ∈ Γ∗ : (ε, q0, w) `∗ (y, qyes, z)

It might be somewhat surprising, that also this model is still equivalent
to the original Definition 2.3 in terms of expressiveness:

Theorem 2.6. Given a non-deterministic Turing machine N , one can con-
struct a deterministic Turing machine M with L(M) = L(N). Further, if
t(w) is the number of steps after which N accepts an input w, there is a
constant c such that M accepts w after at most ct(w) steps.

2.3 Decidability, Undecidability, Semi-Decidability 11

Proof (Sketch). Given an input word w, we need to deterministically search
the computation tree of N . This can be done using a breadth-first technique:
for each i ≥ 0, we visit all configurations of the tree up to depth i. If N
accepts w, we will eventually find an accepting configuration at depth t. If
d is the maximal degree of non-determinism (i.e., the maximal number of
choices δ provides at each step), then the procedure will take at most

∑t
i=0 d

i

steps, which can be bounded from above by ct with a suitable constant c.

Thus, we saw that a non-deterministic Turing machine can always be
simulated by a deterministic one, even though the number of steps might
be exponentially higher. We note further, that if the computation tree of N
on w is finite, then the procedure will terminate even if w /∈ L(N).

Unless stated otherwise, we will use deterministic Turing machines through-
out this course.

2.3 Decidability, Undecidability, Semi-Decidability

In the previous section, we defined an acceptor M for a language L to have
two final states, qyes and qno, and we demanded M for each input w ∈ L to
end up in the final state qyes. So far we did not restrict what should happen
in the case w /∈ L. The machine M could either halt in qno or not halt at all.
As we will see now, this distinction actually makes an important difference.

Definition 2.7. A language L is called decidable, if there exists a Turing
machine M with L(M) = L that halts on all inputs.

In particular, we want M to halt in state qyes for each input w ∈ L and
halt in state qno for each input w /∈ L. We also say M decides L. If L is
not decidable, we call it undecidable. The set of all decidable languages is
denoted by REC (“recursive languages”, for historic reasons).

Definition 2.8. A language L is called semi-decidable, if there exists a
Turing machine M with L(M) = L.

In particular, M needs to halt on all inputs w ∈ L in state qyes, but
on inputs w /∈ L it can either halt in state qno or not halt at all. The set
of all semi-decidable5 languages is called RE (“recursively enumerable”, for
historic reasons).

Example 2.9. Recall the language PRIMES of all prime numbers as defined
in Example 2.2. It is easy to see that PRIMES is decidable, since given
w = [n]10 for some n, a Turing machine M just needs to check for all
numbers i with 1 < i < n whether n is a multiple of i. If this is the case for
any i, it halts in qno, otherwise in qyes. Thus, PRIMES ∈ REC.

5The name “semi-decidable” is based on the fact, that for positive instances w ∈ L,
on can let M run and will eventually get a positive answer. For w /∈ L, halting is not
guaranteed, so as long as M does not halt, one does actually not know, whether w is a
positive instance or not – and one might stay in this unfortunate situation infinitely.

2.4 The Halting Problem 12

It is immediately clear that every decidable language is also semi-decidable,
i.e, REC ⊆ RE, just by definition from above. An interesting question is,
whether there are languages that are semi-decidable, but not decidable.
If that is the case, the subtle difference regarding the termination actually
makes a difference, and we will turn to that question in the following section.
Before that, we will take a look at some useful properties of the complement
L := Σ∗ − L of a language L:

Theorem 2.10. For all languages L, the following holds:

1. L ∈ REC ⇐⇒ L ∈ REC. (“closed under taking complements”)

2. L ∈ REC ⇐⇒ (L ∈ RE∧L ∈ RE).

Proof. The first equivalence is clear, since given a Turing machine M that
decides L, one can derive a machine M ′ deciding L by just swapping qyes
and qno.

For the second equivalence, direction “=⇒” follows from REC ⊆ RE and
the closedness under complement. To prove direction “⇐=”, let M1 and
M2 be Turing machines with L(M1) = L and L(M2) = L. Then we can
construct a TM M that, given an input w, simulates M1 and M2 in parallel
step by step, using two tapes. Since we know that either w ∈ L or w ∈ L,
one of the two simulations will eventually end up in an accepting state. Our
machine M can then accept or reject, depending on that information. Thus,
M halts on all inputs and decides L.

2.4 The Halting Problem

We have defined decidable and semi-decidable languages, and turn now to
the question whether there is actually a difference between both properties.
We do that by defining a classical problem, the Halting Problem, and show
that it is not decidable (even though being semi-decidable). The Halting
Problem has great significance from a practical point of view: Given a pro-
gram and an input string, is it possible in an automatic way to check if
that program terminates when running it on that input? In terms of Turing
machines, this can be expressed formally:

Definition 2.11 (Halting Problem). The Halting Problem H is the set of
all pairs of encodings 〈M〉 of Turing machines M and words w, such that
M halts on input w:

H := {(〈M〉, w) |M(w) 6=↗}

We will show that the Halting Problem is not decidable, but still semi-
decidable:

Theorem 2.12. H ∈ RE−REC

2.4 The Halting Problem 13

Proof. First, it is clear that H is semi-decidable, i.e., H ∈ RE, since one can
just use the Universal Machine from Theorem 2.5 to simulate M(w). If that
simulation halts, we accept in state qyes. If it does not halt, we will also not
halt, but that is also not necessary.

The more involved part is to show that there is no Turing machine MH

deciding H, i.e., a Turing machine that always halts with the right answer.
Note that we can not use the Universal Machine here, since in case MH(w)
does not halt, we will never know if that is really the case or if we just
did not run the simulation long enough. In general, it is easier to show the
existence of machines (buy just constructing one) than to show that none
can exist at all – maybe we are just not clever enough to construct one?
Thus, proofs are often done indirectly. The proof technique we will use is
a standard method in computability and complexity theory, and is called
diagonalization.

“yes”

“no”

N

w
〈M〉
w

MH
“yes”

Figure 7: Machine N in the proof of H /∈ REC

Let’s suppose on the contrary, that a TM MH exists that decides H. We
will use MH to construct another machine N as follows, see Figure 7: For
any input w, N simulates MH(w,w) of which we know that it will eventually
halt in the accepting or rejecting state. If it halts in the accepting state,
our machine N will enter an infinite loop and never halt. If, on the other
hand, MH(w,w) halts in the rejecting state, N will halt in qyes. Since N
is a Turing machine itself, we can create an encoding 〈N〉 of it. Now, how
does N behave, if it is run with input 〈N〉, i.e., its own encoding?

• Assume, N(〈N〉) halts. By definition of N , this means that the sim-
ulation of MH(〈N〉, 〈N〉) came to halt in the rejecting state of MH .
But this in turn means by definition of MH , that N with input 〈N〉
will not halt, contradicting our assumption.

• If we assume otherwise that N(〈N〉) does not halt, then we again know
from the definition of N , that the simulation of MH(〈N〉, 〈N〉) came
to halt in the accepting state of MH . By definition of MH , this means
that N with input 〈N〉 halts, again contradicting the assumption.

Thus, N can not exist, but since we constructed it directly from MH , also
MH can not exist.

2.5 More Undecidability 14

Finally, we know that there are undecidable languages which are at
least semi-decidable. But with a simple counting argument, it is also clear
that there are also languages that are not even semi-decidable: Each semi-
decidable language represents at least one Turing machine. Since they all
can be encoded into strings, there are only countably many Turing machines,
i.e., as many as there are natural numbers. On the other hand, there are
2Σ∗ languages. This is is uncountably infinite, i.e., as big as the power set
of the natural numbers. Set theory tells us that there can be no one-to-one
mapping from a set to its power set. Thus, we have the following corollary:

Corollary 2.13. REC (RE (P(Σ∗)

Actually, one of the languages that are not even semi-decidable, we al-
ready know: Since H, the Halting Problem, is semi-decidable but not decid-
able, its complement H can’t be semi-decidable (otherwise, one could decide
H, see Theorem 2.10).

Corollary 2.14. H /∈ RE

2.5 More Undecidability

2.5.1 Reductions

We have seen now that some problems seem to be harder than others. But
is it possible to somehow directly compare problems to each other? The
main concept for this in computability and complexity theory is the notion
of reductions. Intuitively, a reduction from a problem A to a problem B
expresses, that once one knows how to solve B, one can derive a method for
solving A. Thus, a method to solve B induces a method to solve A. In that
sense, B is “more difficult” than A, since being able to solve B implies the
ability to solve A, so A can’t be more difficult.

There are several concepts to capture this intuitive notion formally. The
concept we will be using is called many-one reduction. It relies on the
existence of a total computable function – recall that this is a function that
is defined for all arguments and can be computed by a Turing machine.

Definition 2.15 (Many-one Reduction). A language A ⊆ Σ∗ is many-
one reducible to a language B ⊆ Σ∗, written A ≤m B, if there is a total
computable function f : Σ∗ → Σ∗, such that

∀w ∈ Σ∗ : w ∈ A ⇐⇒ f(w) ∈ B

We call f the reduction function.

As we see from the definition, A ≤m B if there is a function f that can
be computed and that maps all positive instances of A to positive instances
of B, as well as negative instances to negative instances. Thus, to decide A

2.5 More Undecidability 15

given a machine Mf that computes f and a machine MB deciding B, one can
construct a machine MA by first simulating Mf and on its output simulating
MB. It follows that decidability and semi-decidability of B transfer to A.
We state these and some additional properties of ≤m in the following lemma.

Lemma 2.16. For all languages A,B and C the following properties hold:

1. A ≤m B ∧B ∈ REC =⇒ A ∈ REC (Closedness of REC under ≤m)

2. A ≤m B ∧B ∈ RE =⇒ A ∈ RE (Closedness of RE under ≤m)

3. A ≤m B ∧B ≤m C =⇒ A ≤m C (Transitivity of ≤m)

4. A ≤m B ⇐⇒ A ≤m B

Proof. The first two by discussion above, the rest as an exercise.

These properties can be used to directly show undecidability of lan-
guages, based on the undecidability of others: it follows directly that if A is
undecidable, then B is also undecidable, provided A ≤m B.

Example 2.17. As an example, we consider REACH, the reachability prob-
lem:

REACH := {(G, u, v) | there is a path from u to v in G}

An instance consists of a finite directed graph G = (V,E) with V being the
set of nodes (vertices) and E the set of edges, E ⊆ V × V , and two nodes
u, v ∈ V . (Note that those can easily be encoded over some fixed alphabet
Σ.) The positive instances are those triples, where G contains a path from
u to v, i.e., there are nodes v0, . . . , vk ∈ V such that v0 = u, vk = v and
(vi, vi+1) ∈ E for all i = 0, . . . , i− 1. Using a standard graph search method
(like depth-first search), this problem can be easily decided, since the graph
G is finite. Thus, REACH ∈ REC.

The second language for our example is REG-EMPTY, the emptiness
problem for regular languages. Recall that regular languages are those de-
cided by a deterministic finite automaton (DFA):

REG-EMPTY := {〈D〉 | L(D) = ∅}

An instance is the description of a DFA. The positive instances are those
not accepting any word, i.e., the language they accept is empty.

It is easy to see, that the described emptiness problem can be reduced to
the complement of the reachability problem: given the description of a DFA
D, one can construct a graph G using the states as nodes, and the state
transitions as edges. Further, we introduce a new node qf with edges from
all final states. This construction 〈D〉 7→ (G, q0, qf) establishes a reduction,
since the accepted language is empty if and only if qf is not reachable from q0.
Thus, we have REG-EMPTY ≤m REACH, and it follows REG-EMPTY ∈ REC
from REACH ∈ REC and closedness under complement.

2.5 More Undecidability 16

We take as a second and more elaborate example the Halting Problem
with empty input. It is the set of all Turing machines, that don’t halt when
they start running with empty input. This seems like a special case of the
general Halting Problem and might thus be easier to solve: if the general
case is not decidable, then maybe there is still hope for the special case?
Unfortunately, this will turn out to be a negative result, since the general
case can be reduced to the special case.

Lemma 2.18. Let Hε be the Halting Problem with empty input, i.e.:

Hε := {〈M〉 |M(ε) 6=↗}

Then Hε /∈ REC.

Proof. We already know thatH /∈ REC. If we can find a reductionH ≤m Hε,
then it follows from Lemma 2.16 that Hε /∈ REC. We will now describe the
reduction function f . It takes an instance of H as input and is supposed to
output an instance of Hε, i.e.,

f : (〈M〉, w) 7→ 〈M ′〉.

Given the pair (〈M〉, w) we must describe how to effectively derive a TM
M ′ such that M ′(ε) halts if and only if M(w) halts. This can be easily done
as follows: M ′ ignores its input and writes w onto the tape, which is stored
in its “program”, i.e., in its transition function δ′. Note that w is finite
and fixed, so it can be “hard-wired” in δ′ beforehand. After writing w, M ′

proceeds by simulating M . See Figure 8.

w

“yes”M

M ′

Figure 8: Machine M ′ in the proof of Hε /∈ REC

This construction provides the necessary reduction function f : firstly, f
can obviously be computed by a Turing machine, since it only involves basic
syntactic modifications of the machine description. Secondly, by construc-
tion of the simulation, we have M(w) = M ′(ε). Thus, (〈M〉, w) ∈ H ⇐⇒
〈M ′〉 ∈ Hε.

2.5.2 Rice’s Theorem

After the introduction of the Halting Problem as a practically relevant prob-
lem that is actually undecidable, one might wonder, what other types of
problems are undecidable. Maybe, after all, those are mostly just artificial

2.5 More Undecidability 17

problems, and except for a few cases like the Halting Problem most problems
of practical concern are actually decidable? Unfortunately, it turns out that
checking any non-trivial (behavioural) property of a program is undecid-
able in the general case. This is of high practical relevance, since it means
that all methods to check non-trivial properties need to either operate on a
restricted, less powerful model, or are just approximate and thus erroneous.

This important result is captured by the following theorem. Intuitively,
it expresses that given a Turing Machine M , one can generally not automat-
ically check whether the accepted language of M has a certain non-trivial
property, i.e., whether its language belongs to a given class C.

Theorem 2.19 (Rice’s Theorem). Let C be a non-trivial class of semi-
decidable languages, i.e., ∅ (C (RE. Then the following language LC is
undecidable:

LC := {〈M〉 | L(M) ∈ C}

Proof. Let us first assume that ∅ /∈ C, i.e., the empty language does not have
the property described by C. We will reduce the Halting Problem H to LC .

Let further A ∈ RE. Such an A must exist by assumption about C, since
∅ /∈ C, but C 6= ∅. (Note the different levels of empty sets here!) Let further
MA be a TM that accepts A, i.e., L(MA) = A.

Given a tuple (〈M〉, w), we construct a TM M ′ as follows (see Figure 9).
On some input y, our new machine M ′ first simulates M(w) on a second
tape. If M(w) halts, M ′ continues with simulating MA(y) and halting in
the state in which MA halts (if it does).

y “yes”

“no”
MA

M ′

“yes”

“no”
Mw

Figure 9: Machine M ′ in the proof of Rice’s Theorem

This construction already produces the necessary reduction H ≤m LC :

• If (〈M〉, w) ∈ H, then M ′ will, on any input y, first simulate M(w)
which halts. M ′ then proceeds with a simulation of MA(y). Therefore,
we have M ′(y) = MA(y), so it follows L(M ′) = L(MA) = A and thus
〈M ′〉 ∈ C.

• On the other hand, if (〈M〉, w) /∈ H, then on any input y, M ′(y)
will not terminate (since it first simulates the non-terminating M(w)).
Therefore, we have M ′(y) =↗, so it follows L(M ′) = ∅ and thus
〈M ′〉 /∈ C.

2.5 More Undecidability 18

To summarize:
(〈M〉, w) ∈ H ⇐⇒ 〈M ′〉 ∈ C

It follows H ≤m LC .
We assumed in the beginning, that ∅ /∈ C. If the opposite is the case,

then the proof works exactly like above, with the only difference that the
obtained reduction is H ≤m LC . We invite the reader to try out the details.
In either case, it follows that LC /∈ REC.

Note that Theorem 2.19 contains Hε as a special case with C being the
set of languages that include the empty word ε. Another example is the
following.

Example 2.20. The language L := {〈M〉 | L(M) contains at most 5 words}
is undecidable. This follows from Rice’s Theorem with C being the set of all
languages with at most 5 words from RE, since this C is neither empty (there
are semi-decidable languages with that property) nor whole RE (there are e.g.
infinite semi-decidable languages). Thus, in general, one can not automat-
ically find out whether a Turing machine accepts just a bounded number of
inputs for any bound k.

Beware that this undecidability is concerned with the behaviour of Turing
machines. There are of course other properties that can easily be decided:

Example 2.21. The language L := {〈M〉 | M contains at most 5 states}
is decidable. The property can easily be checked by looking at the encoding
of the given machine, which is finite. Rice’s Theorem can not be applied,
since the property doesn’t concern the accepted language, i.e., it is not about
a certain specific behaviour, but rather about the syntactical structure.

19

3 Complexity Classes

So far, we only discussed what algorithms can do and where they will fail, no
matter how hard we try. But in the case of decidable problems, i.e., where
an algorithm always succeeds to answer our questions, there are also huge
differences: How long does the algorithm run? How much memory will it
need? We will now turn to these computations with restricted resources in a
very general sense. This is the core of what complexity theory is concerned
with.

3.1 Landau Symbols: The O(·) Notation

We will be interested in resource bounds (i.e., for time and space) depending
on the size of the input. Thus, we will consider functions f : N → N that
will be used as a bound on the resource in question. For example, we will use
f(n) = n2 to place a quadratic bound on the number of steps that a Turing
machine is allowed to take when run on an input w of size |w| = n. The point
here is to categorize this as being asymptotically at most quadratic. So we
are not really interested whether we are dealing with n2 or 5 ·n2 + 3, or any
other additive or multiplicative constant. The reason is, that for sufficiently
large n, these constants will be eventually dominated by the term n2. Thus,
we would like to consider c1 · n2 + c2 as essentially equivalent bounds, no
matter which values the constants c1 and c2 actually have. Further, since
we are interested in the asymptotic behaviour for growing n, we will already
consider a function as being “quadratic” if it only exhibits this growth from
a certain point n0 on – even if it assumes arbitrary values for the finitely
many arguments which are smaller than that.

To capture this notion, it is common to use Landau Symbols, in particular
the O(·) symbol. Formally, it can be defined as follows:

Definition 3.1. Let g : N→ N. With O(g) we denote the set of all functions
f : N→ N such that there are numbers n0 and c with

∀n ≥ n0 : f(n) ≤ c · g(n).

It is also common to just write f(n) = O(g(n)).

Intuitively, this means that asymptotically, function f doesn’t grow
faster than function g. In our example from above, we have f(n) = 5 ·n2 +3
and g(n) = n2, and it is easy to verify f ∈ O(g). There is another charac-
terization of f ∈ O(g), that is sometimes more convenient:

Lemma 3.2. For f, g : N→ N>0, we have the following equivalence:

f ∈ O(g) ⇐⇒ ∃c > 0 : lim sup
n→∞

f(n)
g(n)

≤ c

3.2 Time and Space Complexity 20

Proof. Left as an exercise.

In the alternative notation f(n) = O(g(n)), the example reads 5·n2+3 =
O(n2), but this is a slight misuse of notation, since the right hand side
is actually a set. It is even common to write O(h(n)) = O(g(n)) if for
all functions f ∈ O(h) it holds that f ∈ O(g). Note that the “=” sign
actually represents an “element of” or a “subset of” relation (depending on
the context) and is thus not symmetric. For example it holds that O(n) =
O(n2), but not O(n2) = O(n).

Example 3.3. Some more, important examples are the following:

• n · log(n) = O(n2)

• nc = O(2n) for all constants c

• O(1) are the bounded functions

• nO(1) are the functions bounded by a polynomial

In addition to O(·) to represent an upper bound of the growth, there
are also other Landau symbols to represent strict upper bounds (o(·)), lower
bounds (Ω(·)), strict lower bounds (ω(·)) and “grows asymptotically equally”
(Θ(·)). We skip the details for these.

3.2 Time and Space Complexity

We introduced some kind of “classification” to the complexity functions
that will be useful to reason about complexity in a little more abstract
way. But what functions do we actually consider? For mostly technical
reasons, we need to impose restrictions on which complexity functions we
want to allow. They should not be arbitrarily “wild”, but they should
computable and sometimes we even have to explicitly demand one of the
following “stopwatch” properties:

Definition 3.4. Let f : N→ N be a computable function.

1. f is time-constructible if there exists a TM which on input6 1n stops
after O(n+ f(n)) steps.

2. f is space-constructible if there exists a TM which on input 1n outputs
1f(n) and does not use more than O(f(n)) space.

6We write an for the string aaa · · · a| {z }
n

.

3.2 Time and Space Complexity 21

In fact, all common “natural” functions do have these properties, includ-
ing the polynomials and the exponential and logarithm functions. Thus, we
don’t restrict ourselves unnecessarily.

We continue with central definitions for complexity classes. Recall that
we defined Turing machines to be deterministic, but that we introduced the
extension of non-determinism in Section 2.2.2. The difference is, that a non-
deterministic machine may have the opportunity to choose between several
possible configurations for certain steps, which gives rise to a computation
tree.

Definition 3.5. We define the resource measures as follows:

1. The runtime timeM (w) of a TM M with input w is defined as:

timeM (w) := max{t ≥ 0 | ∃y, z ∈ Γ∗, q ∈ F : (w, q0, ε) `t (y, q, z)}

2. If, for all inputs w and a t : N → N it holds that timeM (w) ≤ t(|w|),
then M is t(n)-time-bounded. We further define:

DTIME(t(n)) := {L(M) |M is t(n)-time-bounded}

3. The required space spaceM (w) of a TM M with input w is defined as:

spaceM (w) := max{n ≥ 0 | M uses n squares on a working tape}

4. If for all inputs w and an s : N→ N it holds that spaceM (w) ≤ s(|w|),
then M is s(n)-space-bounded. We further define:

DSPACE(s(n)) := {L(M) |M is s(n)-space-bounded}

5. For functions, we have:

FTIME(t(n)) := {f | ∃M being t(n)-time-bounded and computing f}

6. For non-deterministic M , time and space are defined as above, and we
have:

NTIME(t(n)) := {L(M) |M is non-det. and t(n)-time-bounded}
NSPACE(s(n)) := {L(M) |M is non-det. and s(n)-space-bounded}

Note that we talk about multiple tapes for spaceM (w), and in particular
only about the space requirement the working tapes. The reason for this
is that the machine could be restricted to use even less space than the size
of the input, e.g., at most log(n) extra squares for inputs of size n. This
implies that the machine is not allowed to write on the input tape and to
read from the output tape.

3.2 Time and Space Complexity 22

We can now characterize the following deterministic time complexity
classes:

LINTIME :=
⋃
c≥1

DTIME(cn+ c) = DTIME(O(n)) (Linear time)

P :=
⋃
c≥1

DTIME(nc + c) = DTIME(nO(1)) (Polynomial time)

FP :=
⋃
c≥1

FTIME(nc + c) = FTIME(nO(1)) (Polyn.-time functions)

EXP :=
⋃
c≥1

DTIME(2n
c+c) = DTIME

(
2n
O(1)
)

(Exponential time)

For deterministic space complexity classes, we have the following:

L := DSPACE(O(log(n))) (Logarithmic space)

PSPACE := DSPACE(nO(1)) (Polynomial space)

EXPSPACE := DSPACE
(

2n
O(1)
)

(Exponential space)

The non-deterministic classes NLINTIME, NP, NEXP, NL, NPSPACE and
NEXPSPACE are defined in a similar way.

Example 3.6. As a classical example, we consider again REACH, the reach-
ability problem, which is defined as before in Example 2.17:

REACH := {(G, u, v) | there is a path from u to v in G}

We saw, that this problem is decidable, but how much space does it take if
we are careful?

We first note that REACH can be non-deterministically decided in log-
arithmic space, i.e., REACH ∈ NL: A machine M iteratively explores the
graph beginning from u by non-deterministically choosing an edge to tra-
verse. It uses the working tape to remember the number of the current node,
together with a step counter. The machine accepts, if it encounters node v,
but rejects, if this did not happen after n steps. This works since if there
is a path, then there is one of length at most n, and at least one possible
computation of M will find it. Both the maintained node number and the
step counter require logarithmic space, thus the space requirement of M is
O(log(n)).

Deterministically, this can be done using O(log(n)2) space, REACH ∈
DSPACE(O(log(n)2)). The construction for doing that is a bit more involved.
Without going into detail, the problem for a path of length n between u and
v is recursively split at an intermediate node w into two paths of length n/2,
iterating over all intermediate nodes w. The recursion stack for doing this
is bounded by a logarithmic number of elements, each containing two node
numbers and a length (which take logarithmic space). Together, this results
in the O(log(n)2) space bound.

3.3 Relations between Complexity Classes 23

3.3 Relations between Complexity Classes

The following relations between the above classes are immediately clear from
their definitions:

LINTIME ⊆ P ⊆ EXP

The same holds for the non-deterministic variants.
So far, we only considered inclusions, without separating the classes,

i.e., without showing that classes are actually different. Such a result is the
following, which establishes a quite “fine-grained” separation of complexity
classes:

Theorem 3.7 (Hierarchy Theorem).

• Let f : N→ N be time-constructible and g : N→ N with

lim inf
n→∞

g(n) · log(g(n))
f(n)

= 0.

Then there is a language L with L ∈ DTIME(f(n))− DTIME(g(n)).

• Let f : N→ N be space-constructible and g : N→ N with

lim inf
n→∞

g(n)
f(n)

= 0.

Then there is a language L with L ∈ DSPACE(f(n))−DSPACE(g(n)).

(Without proof.)

Note the analogy of the first part of the theorem concerning the time
hierarchy to the classes of decidable and semi-decidable languages in Sec-
tion 2.3: Recall that REC (RE, which means that we gain expressiveness
by just letting a Turing machine reject an input by a diverging computation,
i.e., by not halting after finitely many steps. One of the new problems we
gained by allowing that was the Halting Problem H. The above result is a
“quantitative” variant, where longer runtime also yields new languages.

Example 3.8. Let Ck := DTIME(O(nk)) be the set of problems that can be
solved by a machine that is time-bounded by a polynomial of degree k. Then
it follows from Theorem 3.7:

C1 (C2 (C3 (. . .

In other words: For each two polynomials p(n) and q(n) of different degrees
deg p < deg q, there is a language L that can be decided in O(q(n)) time but
not in O(p(n)) time. Thus, this establishes a lower time complexity bound
for L.

3.3 Relations between Complexity Classes 24

We turn now to the comparison between deterministic and non-determi-
nistic classes. To begin with, we have the following relations:

Theorem 3.9. For each space-constructible function f : N → N, the fol-
lowing holds:

DTIME(f) ⊆ NTIME(f) ⊆ DSPACE(f) ⊆ NSPACE(f)

Proof (Sketch). The first and third inclusion are clear, since deterministic
machines can be seen as special cases of non-deterministic machines. Thus,
we only need to prove NTIME(f) ⊆ DSPACE(f).

The key observation is, that a machine that is time-bounded by a func-
tion f is as well space-bounded by that function, since in each step, a ma-
chine can only reach at most one additional square. Further, we can take
care of the non-determinism by a deterministic simulation in the follow-
ing way: We know, that there is a non-deterministic machine N with a
runtime bound f(n) for inputs of size n. Thus, N does at most f(n) non-
deterministic choices during its computation. Further, let d be the maximal
degree of the choices, i.e., at each step, N can choose only among d different
next steps. (This number can be derived from the transition function δ).

We can now conduct a deterministic simulation of N : given an input w
of size n, we iteratively generate all words of length f(n) over the alphabet
{1, . . . , d} on a working tape. Each symbol represents the choice of N ’s
decisions for the non-deterministic choices, see Figure 10.

2
3

1
1

(2, 3, 1, 1)

Figure 10: Deterministic simulation of a non-deterministic compu-
tation tree: Numbering all non-deterministic choices. The illustrated
computation path is represented by the “choice word” c = 2311.

For each of these “choice words” c, we simulate N and at each choice, we
act according to the current symbol in c. For the simulation itself, we use
another working tape. Note that this simulation is deterministic, since we
iteratively simulate all paths in the computation tree of N . Now we know,
that if there is an accepting computation of N , then we will eventually
simulate it. Further, we don’t use more than f(n) space, neither for the
choices c nor for the working tape of N .

Thus, it directly follows:

P ⊆ NP ⊆ PSPACE ⊆ NPSPACE

3.3 Relations between Complexity Classes 25

In the context of polynomial complexity, this means that not only is non-
determinism (not surprisingly) at least as expressive as determinism, but
also that a polynomial space restrictions are less restrictive than polynomial
time restrictions. It is actually unknown, whether the first two inclusions are
strict, and we will turn to that question in the next chapter. For the third
inclusion, it is known that both classes are equal, which means that non-
determinism does not increase expressiveness. This is a direct consequence
of the following theorem:

Theorem 3.10 (Savitch). For each space-constructible function f : N→ N,
the following holds:

NSPACE(f) ⊆ DSPACE(f2)

Proof (Sketch). Let L ∈ NSPACE(f) and ML be a non-deterministic Turing
machine deciding L with space bound f . The proof is based on the configu-
ration graph GM,w of M given an input w. A node in the graph represents
one configuration of M , in particular the state, the positions of the heads
and the contents of the working tapes. It follows, that there is a constant c
such that the number of configurations is bounded by cf(n) if we let n denote
the size of w.

For a deterministic decision procedure, we now only need to find out if
from the initial configuration an accepting configuration is reachable. Fur-
ther, we can assume that there is only one accepting configuration, since
M can be trivially extended to clean up the working tapes before finally
accepting. Thus, we are left with an instance of the reachability problem
in graph GM,w. We saw in Example 3.6 that for a graph with m nodes it
can be solved deterministically in O(log(m)2) space. Since the configuration
graph has at most cf(n) nodes, we can conduct the deterministic decision of
L deterministically using O

(
log
(
cf(n)

)2) = O(f(n)2) space7. Further, we
can get rid of the constant factor that is denoted by the O symbol by encod-
ing the contents of several tape squares into one (using a larger alphabet).
The theorem follows.

Corollary 3.11. PSPACE = NPSPACE.

The last relation of complexity classes we want to introduce in this chap-
ter is the relation of a class C of languages to the class co- C of their com-
plements:

Definition 3.12. Let C ⊆ P(Σ∗) be a class of languages. Then we define:

co- C := {L | L ∈ C}
7Note that a logarithm base change only imposes an additional constant factor:

loga(y) = logb(y) · loga(b).

3.3 Relations between Complexity Classes 26

Example 3.13. Recall that RE is the set of languages L for which a Turing
machine M exists which halts for exactly the positive instances of L. Oth-
erwise it does not halt. In these terms, co- RE is the set of languages such
that a machine M exists that always halts for exactly the negative instances.

Complexity class NP exhibits a similar situation: There is a non-determi-
nistic machine M such that exactly for the positive instances of a language
L ∈ NP a computation path exists that leads to an accepting state. Likewise,
for an L ∈ co- NP, there must be a non-deterministic M with an accepting
computation path exactly for the negative instances.

We already know from Theorem 2.10, that the class of decidable lan-
guages is closed under taking the complement. Thus, we know REC =
co- REC. Further, we know that L and its complement are semi-decidable,
if and only if L is decidable. Thus, we have REC = RE∩ co- RE. This can be
seen as a compensation of the asymmetry of RE between positive and nega-
tive instances: REC is the intersection of problems with identifiable positive
instances (RE) and problems with identifiable negative instances (co- RE).
Thus, the symmetry is restored in REC.

With the polynomially time-bounded classes, P, NP and co- NP, the sit-
uation might look suspiciously similar, but it is not that clear: As described
above, NP exhibits a similar asymmetry. But in contrast to the case with
the decidable and semi-decidable languages, the relation of the three sets is
not known in detail so far. We will turn to that question in the following
chapter.

Fortunately, we are in a much better situation for the polynomially
space-bounded classes. As shown above, PSPACE = NPSPACE, and since
deterministic complexity classes are closed under taking the complement
(via swapping qyes and qno), we have co- PSPACE = PSPACE and thus
NPSPACE = co- NPSPACE.

L

P

NPco-NP

PSPACE = NPSPACE

EXP

Figure 11: Overview of the most important complexity classes

27

4 Feasible Computations: P vs. NP

We gained now a basic understanding of the notions of computability and
complexity. In this chapter, we will focus on the two most prominent
complexity classes, P and NP, and their relation. Their importance is
rooted in the notion that polynomial time bounds are considered “feasible”,
“tractable”, or “efficient”. We will introduce an alternative characterization
of NP that allows for a more convenient perspective on the practical im-
portance of the class. Following that, we explore techniques for classifying
certain problems as being “more difficult” than others. This will lead to the
popular notion of NP-completeness.

4.1 Proving vs. Verifying

In the previous chapter, we introduced the complexity classes P and NP
as the classes of languages that can be decided by deterministic and non-
deterministic Turing machines, respectively, which have a polynomial run-
time bound. In particular, for each L1 ∈ P, we demanded the existence of a
Turing machine M and a polynomial pM (n) = nO(1) such that for each input
w ∈ Σ∗, the runtime of M with input w is bounded by pM (|w|). Similarly,
for L2 ∈ NP, there must be a non-deterministic Turing machine N and a
polynomial pN (n), such that for each input w, the length of all computation
paths of N with input w is bounded by pN (|w|). While a practical intuition
for the significance of P is immediately clear from that description, it might
still lack a good intuition for NP. We will therefore characterize NP in a
different way now.

We begin with a definition regarding relations as sets of tuples.

Definition 4.1. Let R ∈ Σ∗ × Σ∗ be a binary relation. R is polynomially
bounded, if there exists a polynomial p(n), such that for all (x, y) ∈ R, it
holds that |y| ≤ p(|x|).

Thus, the second component of the pairs in such a relation is always
bounded by a polynomial in the length of the first. Using this notion, we
can characterize NP as follows:

Lemma 4.2. The complexity class NP is the class of all languages L for
which there exists a polynomially bounded relation RL ∈ Σ∗ ×Σ∗, such that

• RL is decidable in polynomial time, i.e., RL ∈ P, and

• x ∈ L if and only if there exists a w with (x,w) ∈ RL.

We call w a witness (or proof) for x ∈ L and RL the witness relation.

Before supplying a proof of this, we proceed with a short discussion
about the practical meaning of this characterization, which is in fact the
central reason for the high significance of NP.

4.1 Proving vs. Verifying 28

We recall that for languages L in P, a machine must be able to decide
membership of a word x to L in polynomial time. One can see this as the
task of proving the membership: once given a problem instance, the machine
must work out a proof within a reasonable time. In these terms and using
the new characterization, the languages L ∈ NP relieve the machine from
finding the proof. A proof is supplied in form of the witness w, and all that
is left for the machine is to verify the validity of the proof. By the above
characterization, this verification procedure is supposed to be efficient (since
RL ∈ P) and the proof has a “reasonable” size (since RL is polynomially
bounded). We may thus characterize languages L ∈ NP as follows:

L = {x ∈ Σ∗ | ∃w ∈ Σ∗ : (x,w) ∈ RL}

Therefore, one can interpret P as the set of problems that can be solved
efficiently, whereas NP are the problems for which a solution can be checked
efficiently. See Figure 12 for the setting: A machine deciding a P-problem is
“on its own”, while a machine deciding a NP-problem can rely on a supplied
witness. There just needs to exist such a witness for exactly the positive
instances, the machine does not have to come up with one itself.

“no”

“yes”

“Prover”

“yes”

“no”

“Verifier”
w

x

x

Figure 12: Left: A “prover” for deciding a P-problem instance x;
Right: A “verifier” for deciding an NP-problem instance x with sup-
plied “witness” w

Now, in order to be able to (efficiently) find a solution for a problem,
it seems a natural necessity to be able to (efficiently) recognize a solution
as being one. It is one of the most fundamental questions of computer
science, whether there is “more” to it: whether there are problems, whose
solutions can be efficiently verified, but which can’t be found efficiently. In
formal terms, this is the famous P

?= NP question. Although it may seem
intuitively reasonable to believe that the two classes should be unequal, a
proof of this conjecture has so far turned out to be out of sight. In fact,
many “proofs” of P 6= NP as well as P = NP have been proposed over time,
but were so far all being shown to be flawed. (See for example [Woe] for a
collection of proof attempts.)

We note that also co- NP can be characterized using the witness-based
approach. While for an L ∈ NP there must be a witness relation RL supply-
ing witnesses for all positive instances, an L′ ∈ co- NP has a witness relation
RL′ with witnesses for all negative instances. Thus, NP is characterized

4.1 Proving vs. Verifying 29

by efficiently checkable proofs, whereas co- NP is characterized by efficiently
checkable disproofs. We can therefore write L′ in these terms as follows:

L′ = {x ∈ Σ∗ | ∀w ∈ Σ∗ : (x,w) /∈ RL′}

We now sketch proof of Lemma 4.2, stating the equivalence of both
characterizations of NP.

Proof sketch of Lemma 4.2. We wish to prove the equivalence of the “tra-
ditional” NP definition which is based on the notion of a non-deterministic
Turing machine and the above characterization which is based on the notion
of a witness relation.

Let’s first take a language L ∈ NP using the traditional definition from
Section 3.2. This means that there exists a non-deterministic TM N and
a polynomial pN (n) such that N decides L and all computation paths of
N for an input of size n are bounded by pN (n). We want to show the
existence of a witness relation RL ∈ P that is polynomially bounded. And
indeed, it exists: since given an input x of size n, N does at most pN (n)
steps, it also does at most pN (n) non-deterministic choices. We can encode
these choices into a string that is polynomially bounded in n. For x ∈ L,
there must be at least one accepting computation path, and we can use
the encoding of this path as the witness w of membership x ∈ L. The
relation RL we get is by construction polynomially bounded. It can also
be decided in polynomial time, since to verify (x,w) ∈ RL, one only needs
to (deterministically) simulate N with the non-deterministic choices w, i.e.,
only the computation path represented by w needs to be simulated.

For the other direction, let’s assume the existence of a witness relation
RL for a language L. Recall that RL ∈ P, so there is a deterministic TM
M deciding RL and a polynomial p(n) bounding the size of the second
component. We want to show the existence of a polynomially bounded non-
deterministic TM N deciding L. This machine N can easily be constructed:
given an input x, the machine N can non-deterministically write a witness
w on an extra tape. We know, that |w| must be bounded by p(|x|), so
this takes only polynomially long. After that, N simulates the machine
M that decides RL with input (x,w). This will also take only polynomial
time by assumption. N accepts if and only if M accepts: by construction,
given input x, there is an accepting computation of N if and only if x ∈ L.
Further, the runtime of N is bounded polynomially, thus L ∈ NP.

We give an example of a natural problem in the class NP called the
satisfiability problem. It will turn out that this language plays a fundamental
role in later proofs. For the example, we need the notion of boolean formulas:

Definition 4.3. Let X = {x1, . . . , xN} be a set of variable names.

• A boolean formula over X is defined inductively as follows:

4.1 Proving vs. Verifying 30

– Every variable xi is a boolean formula.

– If ϕ1 and ϕ2 are boolean formulas, then also ¬ϕ1, the negation
of ϕ1, and ϕ1 ∧ ϕ2, the conjunction of ϕ1 and ϕ2.

• We denote the set of all boolean formulas with BOOL.

• A truth assignment for the variables in X is a word α = α1 . . . αN ∈
{0, 1}N . The value ϕ(α) of ϕ under α is defined inductively over the
structure of ϕ:

ϕ : xi ¬ψ ψ1 ∧ ψ2

ϕ(α) : αi 1− ψ(α) ψ1(α) · ψ2(α)

• We use ϕ1 ∨ ϕ2 (disjunction), ϕ1 → ϕ2 (implication) and ϕ1 ↔ ϕ2

(equivalence) as shorthand notations for ¬(¬ϕ1 ∧¬ϕ2), ¬ϕ1 ∨ ϕ2 and
(ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1), respectively.

Example 4.4. As another shorthand notation, consider the exclusive or
XOR with m arguments:

XOR(z1, . . . , zm) :=
m∨
i=1

zi ∧
∧

1≤i<j≤m
¬(zi ∧ zj)

Example 4.5. Consider ψ1 = (x1 ∨ ¬x2) ∧ x3 and α = 011, then we have
ψ1(α) = 1. Other formulas, like ψ2 = (x1 ∧ ¬x1), always evaluate to 0.

We call a boolean formula ϕ satisfiable, if there is a truth assignment α
for its variables such that ϕ(α) = 1. Using an appropriate encoding, boolean
formulas can be encoded into words over some fixed alphabet Σ. Thus, we
can define the language of all encodings of satisfiable formulas as follows:

SAT := {〈ϕ〉 | ϕ ∈ BOOL is satisfiable}

This is a decision problem called the satisfiability problem. It turns out,
that SAT ∈ NP: For each positive instance, a witness for the satisfiability
of the formula is a satisfying assignment of truth values. The size of such
a witness is linearly bounded in the representation of the formula, and the
validity can be easily checked in polynomial time.

As we notice from this example, there are natural problems, for which
it is easy to see that they belong to the class NP. In fact, it is unknown
whether SAT ∈ P, i.e., whether in general the existence of a satisfying truth
assignment can be checked deterministically in polynomial time. In fact, as
we will see in the following sections, a proof for that would be sufficient for
showing P = NP – or, conversely, P 6= NP would imply SAT /∈ P. This can
be seen as a clear indication that an efficient way to solve the satisfiability
problem does not exist.

4.2 Reductions, Hardness, Completeness 31

4.2 Reductions, Hardness, Completeness

As a next step on our quest to capture the expressiveness of NP in compari-
son to P is the wish to be able to directly compare the complexity of concrete
problems. This is not easily possible by just showing the membership to a
certain complexity class (by, e.g., providing a sufficiently bounded Turing
machine): how do we know in what way two problems A and B relate to
each other, if they are both in NP? Which one is “harder”? Even more,
what about a language C ∈ P, is it “easier” than A and B? That is not
necessarily the case, since deterministic polynomial time algorithms for A
and B might also exist, we just did not find them. Their time bounds might
even be of lower degrees! Thus, we see that providing membership to a class
by giving a Turing machine description provides only an upper complexity
bound. For direct comparison, a more sophisticated concept is necessary, as
well as for showing lower complexity bounds, since these are usually quite
difficult to prove directly. (How can you show that a machine with certain
resource bounds can not exist for a given problem?)

We recall the concept of reductions from Section 2.5.1. A problem A
can be reduced to a problem B, if instances from A can be solved by being
able to solve instances from B. The concept we introduced was the many-
one reduction, where a reduction function f is provided, such that positive
instances from A map to positive instances from B, and likewise for negative
instances. Thus, to solve A, one simply applies f and then decides the
membership of the result to B.

This worked well for decidability questions and distinguishing decidable
from undecidable problems. We will use the same idea for the comparison
of problems from a complexity point of view. Since in this setting, the
resources for deciding A and B are bounded, we also need to impose bounds
on the reduction function itself – otherwise, all the necessary work could be
done by computing f and we would not get a useful complexity comparison.

The reduction concept we use is sometimes called “Cook reduction” and
is a bounded variant of the many-one reduction we introduced before. We
define it as follows:

Definition 4.6. A language A ⊆ Σ∗ is polynomially reducible to a language
B ⊆ Σ∗, written A ≤pm B, if there is a total function f ∈ FP, such that

∀w ∈ Σ∗ : w ∈ A ⇐⇒ f(w) ∈ B

This polynomial reduction has properties similar to the many-one reduc-
tion as in Lemma 2.16:

Lemma 4.7. For all languages A,B and C the following properties hold:

1. A ≤pm B ∧B ∈ P =⇒ A ∈ P (Closedness of P under ≤pm)

2. A ≤pm B ∧B ∈ NP =⇒ A ∈ NP (Closedness of NP under ≤pm)

4.2 Reductions, Hardness, Completeness 32

3. A ≤pm B ∧B ≤pm C =⇒ A ≤pm C (Transitivity of ≤pm)

4. A ≤pm B ⇐⇒ A ≤pm B

Proof. Left as an exercise. Note that the composition p ◦ q(n) := p(q(n)) of
two polynomials p(n) and q(n) is again a polynomial.

We further define a notion of “hard” problems for a class C. These prob-
lems are “more difficult” than everything in the whole class. This approach
can be used in practise to convince oneself, that a certain problem is for sure
difficult to solve. The notion can further be used as a first step on the way
to discover a difference between P and NP: if there exists some problem in
NP−P, then it certainly has to be one of the most difficult ones in NP.

Definition 4.8.

• A language A is called C-hard, if

∀L ∈ C : L ≤pm A.

• A C-hard language A belonging to C is called C-complete.

• NPC is the class of all NP-complete languages.

This definition allows us to talk about the “most difficult” problems in
NP by just referring to the set of NP-complete languages, NPC. One can,
by definition, solve any problem in NP, if one knows how to solve just one
single problem in NPC. If indeed just one of them can be solved efficiently,
then P = NP would follow, as the second part of the following lemma states:

Lemma 4.9.

1. A is C-complete if and only if A is co- C-complete.

2. P∩NPC 6= ∅ =⇒ P = NP

3. A ∈ NPC∧ A ≤pm B ∧ B ∈ NP =⇒ B ∈ NPC

Proof. For the first part, let A be C-complete and L ∈ co- C. We want to
show L ≤pm A. Since L ∈ C, we have L ≤pm A. This is equivalent to L ≤pm A,
see Lemma 4.7.

For the second part, assume there is an A ∈ P∩NPC and let L ∈ NP.
We want to show that L ∈ P. And indeed: since A ∈ NPC, we have L ≤pm A
by definition. But since also A ∈ P, it follows from Lemma 4.7 – namely the
closedness of P under ≤pm – that also L ∈ P.

For the third part, assume A ∈ NPC, A ≤pm B and B,L ∈ NP. We want
to show L ≤pm B, since this establishes the NP-completeness of B. From
A ∈ NPC it follows L ≤pm A. Using transitivity of ≤pm, we immediately get
L ≤pm B.

4.2 Reductions, Hardness, Completeness 33

The first part of the lemma tells us that “hardest” problems in a complex-
ity class C directly give rise to “hardest” problems in the “parallel world”
co- C of the complements. The second part states, that if the conjecture
P 6= NP really holds, then none of the NP-complete problems can be solved
efficiently. Further, the third part tells us, that all NP-complete problems
are “equally difficult”, they can all be reduced to each other.

But so far, we didn’t answer an important question yet: Do NP-complete
languages actually exist? Indeed, they do:

Lemma 4.10. The following language is NP-complete:

NPCOMP := {(〈M〉, x, 1n) |M is NTM and accepts x after ≤ n steps}
(1n denotes unary encoding of n, and “NTM” means “non-deterministic
Turing machine”.)

Before providing the proof, we should point out the two proof obligations
in order to show that a language A is indeed NP-complete:

1. Membership: Show A ∈ NP.
(Directly or via A ≤pm B for a B ∈ NP.)

2. Hardness: Show L ≤pm A for all L ∈ NP.
(Directly or via C ≤pm A for a C which is NP-hard.)

The first part can be done by either describing a witness relation RA, or
showing that A ≤pm B for a language B that is already known to be in NP.
The second part can be done by either reducing an arbitrarily chosen L to
A, or, as soon as NP-hard problems are known, reducing another NP-hard
problem to A. The latter is usually easier, since only a particular reduction
needs to be proven. We will do that in all future proofs after the following
one.

Proof of Lemma 4.10. In the following, we assume a fixed alphabet Σ for
all languages involved in the proof. This does not loose generality, since
recoding can be done easily.

It is clear that NPCOMP ∈ NP, since a witness w for (〈M〉, x, 1n) ∈
NPCOMP is just a sequence of the non-deterministic choices M has to take
for accepting x within n steps, so w is at most n symbols long and there-
fore linearly bounded. Verifying the validity of w is in P since only the
computation path of M which is represented by w has to be checked.

To show also NP-hardness of NPCOMP, let L ∈ NP. We want to show
that L ≤pm NPCOMP. For doing that, let ML be a non-deterministic Turing
machine deciding L, time bounded by a polynomial p(n). The following
function f ∈ FP establishes the reduction L ≤pm NPCOMP:

f : x 7→ (〈ML〉, x, 1p(|x|))
(Note that we used the “classical” definition of NP for this part of the proof.
This is not a problem, since both characterizations are equivalent.)

4.3 Natural NP-complete problems 34

4.3 Natural NP-complete problems

We note that NPCOMP is a quite “artificial” problem, which seems to be
designed just for the purpose of being NP-complete and without practical rel-
evance. This is certainly true, but as we will see in this section, there are very
natural problems, which can all be proven NP-complete using NPCOMP.

4.3.1 NP-completeness of SAT

To study the first natural problem of interest, we turn back to the satisfi-
ability problem introduced in Example 4.5, that consisted of all satisfiable
boolean formulas:

SAT := {〈ϕ〉 | ϕ ∈ BOOL is satisfiable}

We already saw that SAT ∈ NP: Once we are given a satisfying truth
assignment to the variables, it is easy to efficiently check its validity. In fact,
as discussed in the beginning of this chapter, this is the defining property of
NP-problems: Once a witness for a positive instance of a problem is known,
it can be efficiently verified. In that regard, SAT does not differ from other
NP-problems. What makes it special is the fact that NPCOMP from above
can be directly reduced to it, which turns SAT into the first natural NP-
complete problem we consider in this course. The details are given in the
proof to the following theorem:

Theorem 4.11 (Cook, Levin). SAT is NP-complete.

Proof. Since we already know SAT ∈ NP, it is sufficient to show NPCOMP ≤pm
SAT. For doing that, we need to supply a reduction function f ∈ FP that
transforms a tuple (〈M〉, x, 1n) of an NTM encoding 〈M〉, an input word x
and a runtime bound in unary 1n, into a formula ψ such that

(〈M〉, x, 1n) ∈ NPCOMP ⇐⇒ ψ ∈ SAT .

Without loss of generality we may assume that M has only one single tape,
since a k-tape TM can be transformed into just using one single tape while
being slowed down only polynomially.

We know that if M accepts x, then there is an accepting computation
path of length at most n. Thus, there are at most 2n + 1 tape positions
reached and therefore only that many positions can contain anything else
than the blank symbol. Thus, we can imagine a configuration of the machine
at each step as a line with 2n + 1 symbols, plus the information on which
position the tape head is and in which state the machine is. We know that
we need to consider at most n steps, so we can imagine a whole (single)
computation of the machine as a matrix with n rows of 2n+ 1 entries, each
row representing the computation in one step. See Figure 13. The matrix
has n · (2n+ 1) = O(n2) entries.

4.3 Natural NP-complete problems 35

. a a a bbac c2 2

. a a bbac c2 2

. a bbac c2 2

. a bbac c2 2

. bbac c2 2

...

c

b

b

b

c

d

dc

9>>>>>>>>>>>>=>>>>>>>>>>>>;
≤ n

| {z }
≤ 2n + 1

Figure 13: Matrix representing a computation. The position of the
tape head in each row is represented by the circle.

Note that since M is non-deterministic, there are several different com-
putations possible for each input x. Each computations corresponds to one
path in the computation tree. M accepts x in at most n steps if there is
a computation path of length ≤ n that leads to the accepting state qyes.
This is the case if and only if there exists one of the described computation
matrices in which one of the rows represents an accepting configuration.

The key idea to the proof is now to exactly describe such a matrix
using one (gigantic) boolean formula ψ. Boolean variables will be used to
describe the tape contents, the position of the tape head, the machine state
in each row, and the relation of different rows to each other. The constructed
formula ψ is satisfiable if and only if the encoded matrix represents an
accepting computation, since every satisfying assignment to the variables
represents a valid and accepting computation of the machine, and vice versa.
Further, each matrix entry can be encoded into boundedly many boolean
variables, which makes the resulting formula, even though huge, of size
O(n2) and thus only polynomially big.

We proceed by providing details of the encoding. Recall that we are given
the description of Turing machine M , with the states Q = {q0, . . . , qk} and
tape alphabet Γ = {a1, . . . , al}. One of the states is the accepting state qyes.
We are further given input x and the step count n. The construction uses
the following variables:

• Qt,q for all8 t ∈ [0, n] and q ∈ Q.
Interpretation: After step t, the machine is in state q.

• Ht,i for all t ∈ [0, n] and i ∈ [−n, n].
Interpretation: After step t, the tape head is at position i.

• Tt,i,a for all t ∈ [0, n], i ∈ [−n, n] and a ∈ Γ.
Interpretation: After step t, the tape contains symbol a at position i.

8We use [a, b] for the set {a, a + 1, . . . , b} of integers.

4.3 Natural NP-complete problems 36

It is now clear, that these are only O(n2) variables. Next, we describe the
formula ψ. It is composed of different parts:

ψ := Conf ∧ Start ∧ Step ∧ End

We describe the parts in detail:

Conf : This formula will make sure that a satisfying truth assignment ac-
tually represents valid configurations at each step: at each time point
t, the machine is in exactly one state q ∈ Q, the head is at exactly
one tape position, and each tape position contains exactly one symbol
from Γ. Thus, we have three parts:

Conf := ConfQ ∧ ConfH ∧ ConfT

ConfQ :=
n∧
t=0

XOR(Qt,q0 , . . . , Qt,qk)

ConfH :=
n∧
t=0

XOR(Ht,−n, . . . ,Ht,n)

ConfT :=
n∧
t=0

n∧
i=−n

XOR(Tt,i,a1 , . . . , Tt,i,al
)

To ease notation, we used a shorthand notation XOR to denote that
exactly one of the variables should be true:

Start: At t = 0, the machine is in the start configuration:

Start := Q0,q0 ∧H0,0 ∧
−1∧
i=−n

T0,i,2 ∧
|x|−1∧
i=0

T0,i,xi+1 ∧
n∧

i=|x|

T0,i,2

Step: At each step, the machine executes a legal action, i.e., it changes only
one tape field, moves the head by at most one position, and all these
actions together with the state change are provided by the transition
function δ. We compose it of two parts Step1 and Step2. Step1 makes
sure that the tape doesn’t change at positions other than the head
position. Step2 encodes the actual executed action:

Step := Step1 ∧ Step2

Step1 :=
n−1∧
t=0

n∧
i=−n

∧
a∈Γ

((¬Ht,i ∧ Tt,i,a)→ Tt+1,i,a)

Step2 :=
n−1∧
t=0

n∧
i=−n

∧
a∈Γ

∧
p∈Q

(
(Qt,p ∧Ht,i ∧ Tt,i,a)

→
∨

(q,b,D)∈δ(p,a)

(Qt+1,q ∧Ht+1,i+D ∧ Tt+1,i,b)
)

4.3 Natural NP-complete problems 37

End: At some point, the machine reaches an accepting configuration:

End :=
n∨
t=0

Qt,qyes

This completes the description of formula ψ. It is easy to verify, that the
formula as well as the time complexity for its construction are polynomial
in n.

We note that the NP-completeness of SAT directly establishes that its
complement UNSAT, the set of all unsatisfiable formulas, is co- NP-complete:

UNSAT := {〈ϕ〉 | ϕ ∈ BOOL is not satisfiable} = SAT

The example SAT from above shows that there are indeed natural prob-
lems that are NP-complete. We will study some more of them in this sec-
tion. Recall that it is sufficient to provide a polynomial time reduction from
a known NPC problem A to a so far unknown problem B ∈ NP to show the
NP-completeness of B. Thus, we will start reducing SAT to new problems,
which we can then add to our “pool” of known NP-complete problems. For
every new problem, the whole variety of the “pool” can be used for new
reductions.

We will introduce and discuss in this section more NP-complete problems
that are relevant in practice, and provide proofs of NP-completeness for some
of them.

4.3.2 CIRSAT

CIRSAT is the satisfiability problem for boolean circuits.

Definition 4.12 (Boolean Circuit). Let X = {x1, . . . , xN} be a set of vari-
able names.

• A boolean circuit over variables X is a sequence c = (g1, . . . , gm) of
gates9:

gi ∈ {⊥,>, x1, . . . , xN , (¬, j), (∧, j, k)}1≤j,k<i

• The boolean function f
(i)
c represented by gate gi is N -ary, i.e., it takes

an input α ∈ {0, 1}N , and is defined inductively:

gi(α) : ⊥ > xi (¬, j) (∧, j, k)

f
(i)
c (α) : 0 1 αi 1− f (j)

c (α) f
(j)
c (α) · f (k)

c (a)

9As with boolean formulas, we omit a ∨ gate in the definition for simplicity reasons.
It can easily be simulated by a ∧ gate and three ¬ gates, enabling us to use it anyway as
shorthand notation.

4.3 Natural NP-complete problems 38

• The boolean function fc represented by c is defined as fc(α) := f
(m)
c (α).

• c is satisfiable if there is an input α ∈ {0, 1}N such that fc(α) = 1.

Example 4.13. The circuit c = (x1, x2, x3, (∧, 1, 2), (¬, 4), (∧, 4, 3), (∨, 5, 6))
can be represented graphically as follows:

∧

∧¬

∨

x1 x2

x3

It corresponds to the boolean formula ϕ = ¬(x1 ∧ x2) ∨ (x1 ∧ x2 ∧ x3).

Apparently, there is a one-to-one correspondence between boolean for-
mulas and boolean circuits. Further, just like boolean formulas, circuits can
be encoded using a fixed alphabet Σ. Thus, we have a new decision prob-
lem CIRSAT containing all encodings of satisfiable circuits, and it is also
NP-complete.

Definition 4.14. The circuit satisfiability problem is defined as follows:

CIRSAT := {〈c〉 | c is a satisfiable circuit}

Lemma 4.15. CIRSAT is NP-complete.

Proof. A boolean formula ϕ can efficiently be transformed into an equivalent
circuit c, thus we have SAT ≤pm CIRSAT. Further, CIRSAT ∈ NP is clear,
since a satisfying input witnesses the satisfiability of a circuit c, is bounded
by the size of the circuit description and can be verified efficiently.

Note that in the other direction, a transformation of circuits to boolean
formulas is not necessarily efficient, since circuits can “reuse” sub-circuits
multiple times. But it is true nevertheless, that CIRSAT ≤pm SAT – this
reduction produces a formula that is only equivalent regarding satisfiability
(and not necessarily regarding all values).

4.3.3 3-SAT

We defined satisfiability for the general class of all boolean formulas. Since
this is a very important problem in practice, researchers try to find efficient
ways to decide it at least for important sub-classes of boolean formulas.
Unfortunately, it turns out that the satisfiability problem of already a quite
restricted and simplified form of boolean formulas is NP-complete:

4.3 Natural NP-complete problems 39

Definition 4.16 (CNF). Let X = {x1, . . . , xN} be a set of variable names.

• A literal l is either a variable name xi or the negation10 ¬xi.

• A disjunction C = l1 ∨ . . . ∨ lk of literals is called a clause.

• A conjunction ϕ = C1 ∧ . . . ∧ Cm of clauses is a boolean formula in
conjunctive normal form (CNF).

• The set of all CNF formulas is denoted with CNFBOOL:

CNFBOOL :=

m∧
i=1

k(i)∨
j=1

σi,j | σi,j are literals

• We use k-CNF for CNF formulas where the clauses only contain k

literals (for fixed k) and denote the set of all k-CNF with k-CNFBOOL.
Thus, we have:

k-SAT := {〈ϕ〉 | ϕ ∈ k-CNFBOOL is satisfiable}

Even though it is easy to see that 1-SAT ∈ P and also 2-SAT ∈ P (see
Exercise 6), the situation is already different for 3-SAT:

Lemma 4.17. 3-SAT is NP-complete.

Proof. Since 3-SAT ≤pm SAT via the identity function, we have 3-SAT ∈ NP.
This is a good example of the fact that a special case trivially reduces to
the general case.

To further show NP-hardness, we will show CIRSAT ≤pm 3-SAT. Let
c = (g1, . . . , gm) be a boolean circuit with N inputs. We want to transform
it into a 3-CNF formula ψc which should be satisfiable iff c is satisfiable.
This formula will contain variables x1, . . . , xN representing the inputs of c,
and additionally variables y1, . . . , ym representing the values at the gates of
c. In particular, for each gate gi, we create the following clauses:

Gate gi Clause Semantics

⊥ {yi} yi = 0
> {yi} yi = 1
xj {yi, xj}, {xj , yi} yi ↔ xj
(¬, j) {yi, yj}, {yi, yj} yi ↔ yj
(∧, j, k) {yi, yj}, {yi, yk}, {yj , yk, yi} yi ↔ (yj ∧ yk)

Finally, we also add the clause {ym}.
Using this construction, it is clear that c is satisfiable iff ψc is:

10We also write xi as shorthand notation for ¬xi.

4.3 Natural NP-complete problems 40

• If there is α ∈ {0, 1}N with fc(α) = 1, then we use this α as an
assignment for the variables x1, . . . , xN . Further, we use the value
f

(j)
c (α) at each gate gj as an assignment to variable yj . By construc-

tion, this makes all clauses true. In particular, {ym} will be true, since
f

(m)
c (α) = fc(α) = 1. Thus, ψc is satisfied.

• If fc(α) = 0 for all α ∈ {0, 1}N , then {ym} will never be true, since by
construction, the value of ym corresponds to f

(m)
c (α). Thus, ψc can

not be satisfied.

It follows, that c ∈ CIRSAT ⇐⇒ ψc ∈ 3-SAT, which is the desired reduction
function, since ψc can be constructed efficiently.

4.3.4 INDEPSET

We now turn to the class of graph-theoretic problems. The one we consider
here, INDEPSET, is concerned with undirected graphs. Such a graph G =
(V,E) consists of a finite set of nodes V and a set of edges11 E ⊆

(
V
2

)
, where

each edge is a set of two (different) nodes, connecting those two12. As with
directed graphs in earlier examples, it is clear that efficient encodings over
a fixed alphabet Σ exist.

One natural question to ask is, whether for a k ∈ N there is a subset
I ⊆ V of size k such that no two nodes of I are connected by an edge:

Definition 4.18. The independent set problem is defined as follows:

INDEPSET :=
{

(G, k) | ∃I ⊆ V (G) : ‖I‖ = k ∧
(
I

2

)
∩ E(G) = ∅

}
Lemma 4.19. INDEPSET is NP-complete.

Proof. It is clear that INDEPSET ∈ NP, since a set I with the property of
being an independent set of size k is a witness for a positive instance (G, k) ∈
INDEPSET and can be verified efficiently by checking for the existence of
edges between its nodes.

To prove the NP-hardness, we provide a reduction 3-SAT ≤pm INDEPSET.
Given a 3-SAT-formula ϕ =

∧k
i=1

(∨3
j=1 σi,j

)
with k clauses of size 3, we

construct a graph G such that it has an independent set of size k iff ϕ is
satisfiable.

Each literal σi,j is a node in the graph:

V := {σi,j}
11We write

`
A
n

´
for the set of subsets of A with n elements.

12We also write V (G) and E(G) for the nodes and edges of G, respectively.

4.3 Natural NP-complete problems 41

We will connect all literals in the same clause with an edge:

E1 :=
{
{σi,j , σi,m} | i ∈ [1, k], j,m ∈ {1, 2, 3}

}
Further, we connect all literals that are complementary, i.e., all literals α1

and α2 with α1 = x and α2 = ¬x for some variable x.

E2 :=
{
{σi,j , σl,m} | σi,j and σl,m are complementary

}
Figure 14 illustrates the construction.

x1

x3 x4 x5

x3x4x2x3x2

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x2 ∨ x4) ∧ (x4 ∨ x3 ∨ x5)

Figure 14: Example for the construction of graph G = (V,E1 ∪ E2)
for given boolean 3-CNF formula ϕ; The triangles are the edges from
E1, connecting literals from the same clause. The dashed lines are
the edges from E2, connecting complementary literals. The marked
nodes form an independent set, representing the (partial) truth value
assignment x1 = x5 = 1, x4 = 0 that leads to a satisfying assignment
for ϕ.

To summarize, the reduction function can be expressed as follows:

f : ϕ 7→ ((V,E1 ∪ E2)︸ ︷︷ ︸
G

, k)

This can easily be computed in polynomial time.
The reduction property holds: If there is a satisfying truth assignment

for the variables in ϕ, there is at least one literal in each clause true. If
we chose one of those literals for each clause, then the corresponding nodes
in the graph form an independent set of size k, since they are pairwise in
different clauses (thus no connections from edges in E1) and are not pairwise
complementary (thus no connections from edges in E2). On the other hand,
if there is an independent set of size k in the resulting graph, no two of them
can represent literals from the same clause in ϕ because of the edges in E1.
Further, no two can represent complementary literals because of the edges
in E2. Thus, there is a truth assignment satisfying all clauses of ϕ.

4.3 Natural NP-complete problems 42

4.3.5 More NP-complete Problems

Many other graph-theoretic problems can be shown NP-complete, using
INDEPSET (or SAT) as a starting point (see also Exercise 7). We will define
a selection of important ones.

Definition 4.20 (Clique Problem).

• A k-clique in a graph is a subset C ⊆ V of size k of the nodes such
that all nodes in C are pairwise connected.

• The clique problem is defined as follows:

CLIQUE :=
{

(G, k) | ∃C ⊆ V (G) : ‖C‖ = k ∧
(
C

2

)
⊆ E

}
(Intuitive problem statement: “Is there a k-clique in G?”)

Definition 4.21 (Node Cover Problem).

• A k-node cover in a graph is a subset N ⊆ V of size k of the nodes
such that of each edge in E, at least one end node is in N .

• The node cover problem is defined as follows:

NODECOVER := {(G, k) | ∃N ⊆ V (G) : ‖N‖ = k ∧ ∀e ∈ E(G) : e ∩N 6= ∅}

(Intuitive problem statement: “Is there a k-node cover in G?”)

Definition 4.22 (Hamilton Path Problem).

• A Hamilton path p = (p0, . . . , pk) of length k in a graph G is a path
that visits all nodes in V (G) exactly once.

• The Hamilton Path Problem is defined as follows:

HAMILTONPATH := {G | ∃p : p is Hamilton path in G}

We also define some other examples, which are not directly graph-theoretic
problems, but are related in the sense that they often can be expressed as
graph problems – and in fact, this is often the key to proving their NP-
completeness.

Definition 4.23 (Hitting Set Problem).

• A k-hitting set in a set A for a collection C = (C1, . . . , Cm) of subsets
of A is a set H of size k which contains at least one element of each
Ci.

4.3 Natural NP-complete problems 43

• The hitting set problem is defined as follows:

HITTINGSET := {(A,C, k) | ∃H ⊆ A : ‖H‖ = k ∧ ∀Ci ∈ C : H ∩ Ci 6= ∅}

(Intuitive problem statement: “Is there a k-hitting set for C?”)

Definition 4.24 (Travelling Salesman Problem).

• A distance matrix D of size n is a matrix with n× n over the natural
numbers N≥0.

• A permutation π : [1, n] → [1, n] is an injective mapping of [1, n] to
itself, i.e., i 6= j =⇒ π(i) 6= π(j).

• The Travelling salesman problem is defined as follows:

TSP :=

{
(D, k) | ∃π :

n∑
i=1

D[π(i), π(i+ 1)] ≤ k

}

(Intuitive problem statement: “Is there a route through the n cities of
length at most k?”)

Definition 4.25 (Knapsack problem).

• Let V = (v1, . . . , vn) be values and W = (w1, . . . , wn) weights, all
natural numbers.

• The Knapsack problem is defined as follows:

KNAPSACK :=

{
(V,W, l,m) | ∃S ⊆ [1, n] :

∑
i∈S

wi ≤ l ∧
∑
i∈S

vi ≥ m

}

(Intuitive problem statement: “Is there a selection S of the n items,
such that there total weight is at most the limit l and their total value
is at least m?”)

Definition 4.26 (Integer Linear Programming).

• Let A be a matrix of size n×n with integer coefficients and b a vector
with n integers:

A ∈ Zn×n ∧ b ∈ Zn

• The Integer linear programming problem is defined as follows:

ILP := {(A, b) | ∃x ∈ Zn : Ax ≤ b}

(Intuitive problem statement: “Is there an integer solution to the sys-
tem of linear inequalities represented by A and b?”)

Definition 4.27 (Bin Packing).

4.4 Beyond NP-completeness 44

• Let A = (a1, . . . , an) ∈ Zn denote the item sizes and b, c ∈ Z the
number of bins and the capacity.

• The bin packing problem is defined as follows:

BINPACK :=

(A, b, c) | ∃ partition S1, . . . , Sb of [1, n] s.t. ∀i :
∑
j∈Si

aj ≤ c

(Intuitive problem statement: “Given b bins of capacity c and n items
with sizes given by A, is it possible to pack all items into the bins?”)

Lemma 4.28. The problems CLIQUE, NODECOVER, HITTINGSET, TSP,
HAMILTONPATH, KNAPSACK, ILP and BINPACK are NP-complete.

(Without proof.)

4.4 Beyond NP-completeness

We now explored a variety of natural problems with practical importance
that are NP-complete. In this last section of the current chapter, we shortly
state some related results and concepts.

4.4.1 Between P and NPC

After so many NP-complete problems, one might get the impression that
each problem in NP is either in P or is NP-complete (if P 6= NP, otherwise,
the classes are the same anyway). Surprisingly, this is not the case: If
P 6= NP, then there are problems between the classes: They are “strictly
easier” than the NP-complete ones, but still “too difficult” to be efficiently
solved in polynomial time:

Lemma 4.29. If P 6= NP, then there is a language L ∈ NP−(P∪NPC).
(Without proof.)

4.4.2 Pseudo-polynomial complexity

An important observation is, that the property of NP-completeness is often
quite dependent on the precise formulation and representation of the prob-
lem. It is for example crucial, that the integer linear programming problem
ILP is restricted to integers. It might look like a special case of LP, the linear
programming problem for rational numbers, but in fact, LP ∈ P. Thus, this
“general case” is easier (and in that sense not a generalization).

Apart from formulation details, also the representation of problem in-
stances plays an important role. Consider for example the Knapsack problem
KNAPSACK which we claimed to be NP-complete. While this is true (even
though we did not provide a proof), there is an algorithm based on dynamic
programming, that can solve the problem in time O(n · l) given n items and

4.4 Beyond NP-completeness 45

the weight limit l. This is in fact only linearly related to the weight limit l
and the number of items n. It still is not a polynomial algorithm because
n · l is not polynomial in the size of the input which is O(n · log(l)). This is
because even though we are given n items, the weight limit is expected to
be given in a binary (or other k-ary) representation. Therefore, such an al-
gorithm is called pseudo-polynomial. This subtle difference is often a source
of confusion.

If a problem remains NP-complete even if instances of size n are only
allowed to contain values bounded by a polynomial p(n), then we call them
strongly NP-complete. These can not even be solved by a pseudo-polynomial
algorithm (unless P = NP). In fact, all problems we presented – except
KNAPSACK – are strongly NP-complete.

4.4.3 Unknown relations

We saw an example of an co- NP-complete problem: UNSAT, the set of
all unsatisfiable boolean formulas. Since co- NP is the “symmetric cousin”
of NP, the problems that are co- NP-complete can be regarded as equally
difficult as the NP-complete ones. But how do NP and co- NP actually relate
to each other?

It is unknown whether NP is closed under taking complements, i.e.,
whether NP = co- NP, even though that would be implied by P = NP. Thus,
NP 6= co- NP is stronger than the conjectured P 6= NP, but it is actually also
widely believed. The intuitive notion of this conjecture is, that there are
problems with efficiently verifiable proofs that don’t have efficiently verifi-
able disproofs. Further, even P (NP∩ co- NP is not known, i.e., whether
there are problems with efficient proofs and disproofs that can not be solved
efficiently.

At the “upper end”, it is also unknown whether NP (PSPACE, i.e.,
whether there are problems (deterministically) solvable with polynomial
space requirements, that don’t have efficiently verifiable witnesses. Actu-
ally, even P (PSPACE is unknown.

As a last open question in this chapter, we wish to briefly discuss the class
of languages between P and NPC. Since P 6= NP is not known, no language
is actually proven to be within NP−(P∪NPC). There are a few natural
languages which still are candidates for this, i.e., no one has yet discovered
a polynomial time algorithm or has established a NP-completeness proof.
One of these candidates was the problem PRIMES of deciding whether a
number is a prime number, as introduced in Example 2.2. (It is actually
also clearly in co- NP and thus was a candidate for showing P (NP∩ co- NP.)
Though, in a recent result from 2002, Agrawal, Kayal, and Saxena proved
elegantly that PRIMES ∈ P. Thus, there is one candidate less. Another
prominent candidate that remains, is the graph isomorphism problem GI. It

4.4 Beyond NP-completeness 46

states the task, given two graphs G1 and G2, to decide whether there is an
isomorphism between them, i.e., if they “look” the same:

GI := {(G1, G2) | ∃π : (e ∈ E(G1) ⇐⇒ π(e) ∈ E(G2))}

This problem is of high practical relevance, and efficient approximations and
solutions for subproblems have been intensively studied (e.g. for trees or
planar graphs). Also in complexity theory, this general problem has gained
so much attention, that researchers defined a whole new complexity class
(also with the name GI) with all problems that can be reduced to the graph
isomorphism problem.

47

5 Advanced Complexity Concepts

In this last chapter, we will widen the view to other concepts that were
developed withing complexity theory and proved useful for gaining new in-
sights.

5.1 Non-uniform Complexity

In our computation model, the Turing machine, we so far always assumed
one fixed machine of finite size to be able to handle problem instances of
arbitrary size. This is called a uniform model of computation, a “one size fits
it all” approach. There are natural situations, in which one wants to model
a device which has more “hardwired information” accessible when the size
of the input grows. Consider for example a cryptographic scheme in which
the security scales with the size of some key and which is supposed to be
proven secure against any attacker. One may want to model the attacker to
be prepared in a way that he might have some fixed precomputed knowledge
available for each key size he encounters. Even against such an attacker, one
wants the scheme to be proven secure. The model also gives a new approach
to the P

?= NP problem.
To capture this notion of non-uniformity, we introduce the concept of

advice. An advice string an is a string that a machine, given an input of size
n, will be given as an additional input.

Definition 5.1 (Turing Machine with Advice).

• A tuple M = (Q,Γ, δ, q0, F,A) with Q,Γ, δ, q0, F as defined before (see
Definition 2.3) and A = {an}n≥0 is a Turing machine with advice.

• The set a A is called the advice.

• The language over an alphabet Σ ⊆ Γ accepted by M is defined as:

L(M) := {x ∈ Σ∗ | ∃y, z ∈ Γ∗ : (ε, q0, x#a|x|) `∗ (y, qyes, z)

(We assume # ∈ Γ to be some dedicated separation symbol.)

Note that the Turing machine itself is a finite object, i.e., a finite repre-
sentation of the algorithm. The advice however can be infinite: For each n,
an can be completely different, supplying more information to the machine
for its decision. Therefore, it can’t be encoded directly into the machines
states, it is external information.

Note also the difference to the concept of a witness we had in the previous
chapter to characterize NP: A witness is (possibly) a different string w for
each input x. Recall that the property is that (at least) one w exists for
each x ∈ L and none exist for x /∈ L. In contrast to this, an advice is static

5.1 Non-uniform Complexity 48

for each n. This means that even though different n may result in different
an, but for each length, an is fixed. Thus, for all inputs x of size n, M gets
the same an as advice.

We note further that without additional restrictions, this is a very pow-
erful concept: For any arbitrary language L (even an undecidable one!), we
could construct a TM with advice deciding that language by encoding into
each an a table with information about all possible input words of size n.
The machine then would only have to look up the input word in an and halt
with the encoded answer it found in the table.

To get a more reasonable model, we impose restrictions on the size of the
advice. If an is for example bounded by a polynomial p(n), the above con-
struction would not be possible anymore. This gives rise to a new language
class:

Definition 5.2. P/poly is the set of all languages L such that a Turing ma-
chine M with advice A exists, such that ∀n : |an| ≤ p(n) for some polynomial
p(n).

This can be seen as non-uniform polynomial time complexity, and it is
clear that it is at least as powerful as the uniform variant: P ⊆ P/poly since
for P, there is no advice necessary. Because of this inclusion, it would be
sufficient to have a language L ∈ NP which is not in P/poly, for proving
P 6= NP. An intuition of why this might be more difficult than it seems at
the first sight, is the following result:

Lemma 5.3. Even P/poly contains undecidable problems.

Proof (Sketch). This can be shown by first demonstrating the existence of
undecidable languages over an alphabet with just one symbol, so called
unary languages. This is immediately clear by encoding the instances of the
Halting Problem in unary. Second, one can show that each unary language
L is in P/poly, since the advice an for each length only needs to indicate,
whether the only possible unary word with that size is in L or not.

Still, researchers have been able to show NP−P/poly 6= ∅ under reason-
able assumptions.

We note that there is another characterization of that class in terms
of circuits. Recall (from Definition 4.12) that a boolean circuit consists of
binary inputs and gates and delivers one output bit. This can be also used
as a model of computation. Let Cn be a boolean circuit with n inputs, then
we can define its accepted language as follows:

L(Cn) := {α ∈ {0, 1}n | fCn(α) = 1}

5.2 Probabilistic Complexity Classes 49

Since one circuit can only deal with words of a fixed size13, the computation
model is extended to a circuit family C = {Cn}n≥0, supplying a different
circuit for each input size. Thus, the accepted language is:

L(C) := {α ∈ L(C|α|)}

Intuitively, this also captures the notion of non-uniformity : For each input
size, a possibly completely new device is supplied for solving a given problem.
A circuit family does not need to have a finite representation, in contrast
to a Turing machine. As with the advice, the model is very powerful if it
is not restricted. Thus, one considers a size bound size(Cn) on the circuits
Cn, which is defined via the number of their gates. This gives rise to a class
of languages:

DSIZE(s(n)) := {L(C) | ∀n ≥ 0 : size(Cn) ≤ s(n)}

It is known, that a language decidable in t(n) time can be decided by circuits
of size O(t(n)2):

Lemma 5.4. DTIME(t(n)) ⊆ DSIZE(O(t(n)2)) (Without proof.)

Finally, we can characterize P/poly as the set of languages with polyno-
mial circuits:

Lemma 5.5. P/poly = DSIZE(nO(1))

Proof (Sketch). First, let L ∈ P/poly decided by a Turing machine with
advice M . The construction of a circuit family C works by constructing
for each n a circuit Cn that captures the actions of M given an input of
size n. This works thanks to Lemma 5.4 from above with only quadratic
growth. Further, the advice an is only polynomially big, so it can easily be
incorporated into the construction.

Second, let L ∈ DSIZE(nO(1)) decided by a circuit family C. One can
use a Turing machine that evaluates a circuit in polynomial time, and give
it a description of the circuit family as advice.

5.2 Probabilistic Complexity Classes

The second advanced concept we want to look at in this chapter deals with
randomized computations: So far, the computation models that we used had
the property, that for each input x, there was one single answer, one clear
outcome of the computation. This even holds for the non-deterministic com-
putations, in the light of their witness-based characterization: Either there
exists a witness, or it does not – but in either case, provided a “potential”

13The alphabet is also fixed to Σ = {0, 1}, but this is not a practical problem, since –
as all modern computers do – other alphabets can be easily encoded into binary form.

5.2 Probabilistic Complexity Classes 50

witness, the verification procedure is deterministic, producing always the
same answer. What we do now is to relax this requirement: At each step,
we allow the machine to randomly choose between different possibilities.
One can imagine this as tossing a coin: with equal probability, “heads” or
“tails” will occur, which will guide the next step of the machine. This in-
troduces uncertainty into the answer of the machine: with the same input
x, it will sometimes classify x as a positive instance, and sometimes as a
negative one.

But how can we use this kind of machine in order to obtain information
about an instance? The difference between positive and negative instances
will be in the probability with which the machine will end up in the final
states qyes and qno. For example, if we have a machine with the property
that for x ∈ L, the vast majority of all possible coin toss outcomes leads to
qyes, and for x /∈ L they lead to qno, then just one run of the machine has a
notable tendency to give the right answer – even though sometimes, it might
be wrong. Depending on the application scenario, this could be enough:
Imagine a cryptographic attack, where the attacker is already happy if he
can recover some secret just with a certain probability.

Syntactically, a probabilistic Turing machine looks the same as a non-
deterministic one: the transition function δ may offer a variety of choices.
(For simplicity and without loosing generality, we may assume that there are
always at most two choices.) The difference to the classical non-deterministic
definition is how we define the accepted language. Classically, the question
was whether there is at least one computation leading to qyes. In the proba-
bilistic setting, it matters how many there are. This is also nicely illustrated
in terms of the computation tree, see Figure 15. Note that this is a realis-
tic model of computation, compared to the quite theoretical nature of the
classical non-deterministic machine.

“no”

“no”

“no”

“yes”

“yes”

Prob[“yes”] = 50%

Figure 15: A computation tree: In the probabilistic model, each
branch is a “coin toss” with equal probability for both possible steps.
The acceptance probability is the probability of reaching an accepting
state, in the example 50%.

5.2 Probabilistic Complexity Classes 51

5.2.1 Notation

Our notation is as follows: For a language L ⊆ Σ∗, we let χL : Σ∗ → {0, 1}
be the characteristic function of L, i.e.:

χL(x) :=

{
1 if x ∈ L
0 if x /∈ L

Further, we let a machine M output 1 if it halts in qyes and 0 if it halts in
qno. (So we can assume a generic qhalt final state.) This allows expressions
like “M(x) = χL(x)” to describe the behaviour of a machine M that deter-
ministically decides L. (This is a quite general notation that can be applied
throughout all of the previous chapters.)

To also include the probabilistic behaviour into the notation, we may
regard the coin tosses as one string r ∈ {0, 1}∗ that is given to the machine
as an auxiliary input, which is a second argument in the notation. This
allows for notation like:

Probr[M(x, r) = 1]

If it is clear that we take the probability over r and talk about a probabilistic
M , we also simply write:

Prob[M(x) = 1]

5.2.2 One-sided Error

We first allow the machine to only have a one-sided error. This means that
for positive instances, it might give a wrong answer (0 instead of 1), as
long as the probability for this is low. For negative answers, we demand
the machine to always answer correctly, i.e., with a 0. Languages for which
efficient machines with such a behaviour exist are grouped into the following
complexity class:

Definition 5.6. The class RP contains all languages L for which a polyno-
mially time-bounded, probabilistic Turing machine M exists, such that:

x ∈ L =⇒ Prob[M(x) = 1] ≥ 1/2
x /∈ L =⇒ Prob[M(x) = 1] = 0

While RP allows the one-sided error for positive instances, we have sym-
metrically that co- RP allows a one-sided error for negative instances.

It is immediately clear, that P ⊆ RP, since a deterministic machine is a
special case of a probabilistic one (discarding the coin tosses). Further, we
have RP ⊆ NP as already discussed. This can also be compared in terms of
the witness relation: recall that NP languages L can be characterized by a
polynomially bounded relation RL such that for each x ∈ L, there is a w
with (x,w) ∈ RL. In these terms, the coin tosses leading to acceptance can

5.2 Probabilistic Complexity Classes 52

also be written as a relation RL such that for each x ∈ L, at least half of all
r have (x, r) ∈ RL. In short:

NP RP

x ∈ L: ∃w : (x,w) ∈ RL Probr[(x, r) ∈ RL] ≥ 1/2
x /∈ L: ∀w : (x,w) /∈ RL ∀r : (x, r) /∈ RL

An interesting question is, whether expressiveness is invariant under
changes of the constant 1/2 in the definition. Consider a machine M that
fulfills all requirements, but can only guarantee a success rate of 1/3 for all
positive instances. It turns out, that one can transform M into a machine
M ′ which will again have a 1/2 constant: M ′ will simulate M twice and
output 1 exactly if one of the simulations did. Otherwise it outputs 0. For
an input x /∈ L, both simulations of M will output 0, so M ′ also does. For
an input x ∈ L, the probability for each of the simulations to output 0 is at
most 2/3. Thus, it is (2/3)2 = 4/9 that both will, which implies that M ′

will output 1 with probability 5/9 > 1/2.
In fact, this robustness can not just be expanded to all other constants

strictly larger than 0, it works even if the acceptance ratio depends polyno-
mially on the size of n. The construction for that is similar to the above,
but uses polynomially many runs of the original machine.

Lemma 5.7. If there is a polynomially time-bounded probabilistic TM M
for a language L and a polynomial p(n) such that the following holds:

x ∈ L =⇒ Prob[M(x) = 1] ≥ 1/p(|x|)
x /∈ L =⇒ Prob[M(x) = 1] = 0

Then L ∈ RP. (Without proof.)

This very low acceptance probability can not just be “boosted” back
to 1/2, it can even be brought very close to 1 using basically the same
technique:

Lemma 5.8. For each L ∈ RP and each polynomial p(n), there is a poly-
nomially time-bounded probabilistic TM M such that:

x ∈ L =⇒ Prob[M(x) = 1] ≥ 1− 2−p(|x|)

x /∈ L =⇒ Prob[M(x) = 1] = 0

(Without proof.)

The downside of this probability amplification (for both lemmas) is, that
the running time increases polynomially, which is formally fine, but might
turn out to be a problem in practice. On the positive side, this amplification
may increase the chance of being right to “almost always”.

5.2 Probabilistic Complexity Classes 53

5.2.3 Two-sided Error

Now, we allow the machine to be wrong for positive and negative instances,
with a probability of 1/3:

Definition 5.9. The class BPP contains all languages L for which a poly-
nomially time-bounded, probabilistic Turing machine M exists, such that:

∀x ∈ L : Prob[M(x) = χL(x)] ≥ 2/3

Using the notation before, we may express this as:

x ∈ L =⇒ Prob[M(x) = 1] ≥ 2/3
x /∈ L =⇒ Prob[M(x) = 1] < 1/3

We notice that this class is closed under taking complements, i.e., BPP =
co- BPP, since the definition is symmetric. Just as with RP, the constant
2/3 is arbitrary and can be replaced. We notice that there are actually two
constants involved: One is a probability such that the right answers are
strictly more likely (1/2 in this example), and the other one is the “gap”
between the probabilities for right and wrong answers (1/6 in this example).
Both may be chosen quite freely, even depending on |x|:

Lemma 5.10. If there is a polynomially time-bounded probabilistic TM M
for a language L, a polynomial p(n) and a computable function f(n) such
that the following holds:

x ∈ L =⇒ Prob[M(x) = 1] ≥ f(|x|) + 1/p(|x|)
x /∈ L =⇒ Prob[M(x) = 1] < f(|x|)− 1/p(|x|)

Then L ∈ BPP. (Without proof.)

Again, this can be “boosted” quite strongly:

Lemma 5.11. For each L ∈ BPP and each polynomial p(n), there is a
polynomially time-bounded probabilistic TM M such that:

∀x ∈ L : Prob[M(x) = χL(x)] ≥ 1− 2−p(|x|)

(Without proof.)

Clearly, RP ⊆ BPP, since a one-sided error is just a special case of a
two-sided one. For BPP, the relation to NP is actually unknown. But it
is important to note that the probability of wrong answers for languages
in L ∈ BPP can be made exponentially small. Thus, BPP has actually
widely replaced P in representing the intuitive notion of “efficiently solvable
problems”. Indeed, it is widely believed that P = BPP, but there is no proof.

5.2 Probabilistic Complexity Classes 54

5.2.4 Monte Carlo vs. Las Vegas

The machines considered so far always answered, but the answers might be
wrong sometimes. Algorithms with this property are called Monte Carlo
algorithms. In contrast to that, Las Vegas algorithms always answer right,
but might sometimes, i.e., with a certain but not too high probability, fail
to deliver an answer.

We let a machine denote with “⊥” the answer “I don’t know”, in addition
to the positive and negative answers 1 and 0. This is used in the following
definition:

Definition 5.12. The class ZPP contains all languages L for which a poly-
nomially time-bounded, probabilistic Turing machine M exists, such that:

• ∀x ∈ L : Prob[M(x) = ⊥] ≤ 1/2, and

• ∀x ∈ L, r : M(x, r) 6= ⊥ =⇒ M(x, r) = χL(x)

To conclude this section about probabilistic complexity, we state some
known relations between the classes:

Lemma 5.13.

1. P ⊆ ZPP ⊆ RP ⊆ BPP

2. ZPP = RP∩ co- RP

3. BPP ⊆ P/poly

4. BPP = P if pseudo random number generators exist.
(Efficient derandomization)

(Without proof.)

The last part of the lemma is concerned with a branch within complexity
theory that deals with derandomization. The idea here is to simulate “truly”
random choices using “artificial” randomness that is created from a small
initial “seed” of random input. Devices for doing that are called pseudo
random number generators (PRNGs). Their output is not really random,
but it looks random. This means that no efficient observer is able to tell the
difference, or to predict future output from past output. (Note that this is
a quite strict and rather theoretical notion and should not be confused with
PRNGs you encounter in practice nowadays.) Under certain assumptions,
one can show that these generators of different strength actually exist, and
they can even be used to completely remove the dependence on a random
source, thus making the decision procedure deterministic.

5.3 Interactive Proof Systems 55

5.3 Interactive Proof Systems

We start this last section with the notion of a proof : Involved in a proof are
usually two entities, the prover and the verifier. In mathematics, a proof for
an assertion is a sequence of steps and intermediate claims, written down
by a prover and to be checked by a verifier. The writer of the proof wants
to convince the reader of the assertion’s validity. In general, a proof is
more than that: prover and verifier may want to interact, involving a dialog
with questions over questions by the verifier, carefully chosen and possibly
adapted to earlier answers given by the prover to clarify or to point out
inconsistencies in the proof. Eventually, if the assertion is actually true and
the verifier has been convinced, the process will end. However, a careful
verifier will only be convinced by such a process, if the assertion indeed
holds – he will refuse to believe what he is being told otherwise.

Interactive proof systems are a formalisation of this intuitive concept.
We can interpret the class NP as the restrictive, non-interactive version:
The prover supplies his proof (we called it “witness”) to the verifier, that
can check it and has to do so efficiently. There is no interaction allowed,
the verifier can not ask additional questions. We call this an NP proof
system. This concept will be generalized now: An interactive proof system
is composed of two machines: a prover, and a verifier. Given an input x,
they start an interaction after which the verifier either accepts or rejects the
input, see Figure 16.

Prover Verifier

“yes”

“no”
time

Figure 16: A prover and a verifier interact during an interactive
proof.

Such a proof system should have the following properties:

1. Efficiency of the verifier.

2. Correctness requirement:

Completeness: Each true assertion has a convincing proof strategy.

Soundness: No false assertion has a convincing proof strategy.

5.3 Interactive Proof Systems 56

Clearly, NP proof systems have this property: The witness relation RL is de-
cidable in polynomial time, so the verifier works efficiently. The correctness
is ensured by the fact that exactly for the positive problem instances, there
is a witness. Our generalized model of an interactive proof system should
also adhere to these properties.

We now provide a formal definition for this concept. It is based on the
notion of an interactive Turing machine: This is a Turing machine with an
extra communication tape and two extra communication states q? and q!.
Two of those machines M1,M2 can be composed to 〈M1,M2〉 such that they
share the communication tape. M1 starts in q0 and M2 in q?, waiting for
M1 to hand over control. After M1 did some computations and possibly
wrote a message to the communication tape, it hands over control to M2 by
switching to q?. This switches M2 to q! and lets M2 do computations. The
machines then hand the control over back and forth, until finally, M2 halts.
Its output tape contains then the result of the interaction denoted with
〈M1,M2〉(x) if the common input was x. The period between two control
switches is called a round. Since we are working on decision problems, we
assume – as above – output 1 for a positive answer “x ∈ L” and 0 for a
negative answer “x /∈ L”. This model is now used as follows:

Definition 5.14 (Interactive Proof System). Let L be a language. An in-
teractive proof system for L is a pair 〈P, V 〉 of interactive Turing machines
with the following properties:

1. V is probabilistic and polynomially time-bounded.

2. Correctness:

Completeness: ∀x ∈ L : Prob[〈P, V 〉(x) = 1] ≥ 2/3

Soundness: ∀x /∈ L : ∀P ∗ : Prob[〈P ∗, V 〉(x) = 1] < 1/3

We note that the prover is not bounded computationally. We further
note that for negative answers, we quantify over all prover strategies, i.e.,
also over all dishonest ones. This model closely resembles requirements used
in cryptology, and it is widely used as a standard model for exploring prop-
erties of cryptographic protocols. We use it here for the sake of complexity
theory and thus create a complexity class for all languages that can be de-
cided with this model:

Definition 5.15 (IP hierarchy).

• Let r : N→ N. The class IP(r(n)) contains all languages L for which
an interactive proof system 〈P, V 〉 exists such that on common input
x, at most r(|x|) rounds are used.

5.3 Interactive Proof Systems 57

• The class IP contains all languages L having interactive proof systems:

IP :=
⋃
r

IP(r(n))

We note that clearly we have NP ⊆ IP, since that is the special case of
just one round: the prover writes the witness on the tape, hands over control
to the verifier, which proceeds (even deterministically).

Indeed, not just the introduction of interaction to this concept, but also
of randomness is essential: If the verifier V were to be deterministic, we
could construct a new prover P ′ which would know each query of the verifier
beforehand (because it could simulate V). Thus, it would only have to send
the final message to the verifier which then would – deterministically – run
a check to produce the output. This is an NP proof system, so without
randomization, IP would clearly be the same as NP.

We note further that we have IP = IP(nO(1)), i.e., there are only poly-
nomially many rounds, since the verifier is time-bounded by a polynomial.
Also, just as for BPP, it can be shown that the error bounds can be made
very small:

Lemma 5.16. For each L ∈ IP and each polynomial p(n), there is an in-
teractive proof system 〈P, V 〉 such that the correctness properties satisfy:

Completeness: ∀x ∈ L : Prob[〈P, V 〉(x) = 1] ≥ 1− 2−p(|x|)

Soundness: ∀x /∈ L : ∀P ∗ : Prob[〈P ∗, V 〉(x) = 1] < 2−p(|x|)

(Without proof.)

This, again, comes with the price of a polynomially increased runtime. In
particular, either the number of rounds or the size of the messages increases
rapidly.

We now provide an example problem that is known to be decidable by
an interactive proof system. It is GNI, the graph non-isomorphism prob-
lem, which is the complement of the graph isomorphism problem, and thus
contains all pairs of graphs which are not isomorphic to each other:

GNI := {(G1, G2) | ¬∃π : (e ∈ E(G1) ⇐⇒ π(e) ∈ E(G2))}

Theorem 5.17. GNI ∈ IP.

Proof (Sketch). The idea of the proof is that any “shuffling” of one of the
two graphs G1 and G2, i.e., a random permutation of its nodes, produces a
new graph H that is isomorphic to exactly one of the two, if G1 and G2 are
not isomorphic. On the other hand, if they are isomorphic, such a shuffling
will always be isomorphic to both. Thus, the verifier can choose one of
G1 and G2 randomly, let’s say Gi, i ∈ {1, 2}. It also chooses a random

5.3 Interactive Proof Systems 58

permutation π over the nodes and creates H := π(Gi). It then sends H to
the prover P and asks, which of the given graphs it used for the shuffling.
Finally, P supplies the answer for that and V checks if the answer is correct.

This protocol has the desired properties: First, the verifier is efficient,
since it is only randomly choosing a permutation and applying it to a graph.
Second, the completeness property is satisfied, since we can construct a P
that finds out the right answer if indeed G1 and G2 are not isomorphic (recall
that P is not bounded). Third, also the soundness property is satisfied, since
when G1 and G2 are isomorphic, whatever a prover is trying to do, its chance
to guess the correct i is just 1/2 since i was randomly chosen and can not
be derived from H.

Note that the soundness bound is only 1/2, even though in the definition
we demanded 1/3. This is easily fixed by conducting the protocol twice
(sequentially or in parallel) and only accepting if the prover was right both
times. By this simple probability amplification, the soundness bound drops
to 1/4.

We note that there are only two rounds involved in the above protocol,
thus GNI ∈ IP(2). This gives an indication that IP is a quite strong class,
since GNI (which is in co- NP) is not known to be in P or NP. Indeed, the
following relations can be shown:

Theorem 5.18.

• (NP∪ co- NP) ⊆ IP

• IP = PSPACE

(Without proof.)

Note that the first one is weaker version of the second relation. It can
be shown by constructing an interactive proof system for 3-SAT, which is
co- NP-complete (since 3-SAT is NP-complete).

There are a couple of extensions to the concept of interactive proof sys-
tems. The perhaps most important one, which is also widely used in cryp-
tography, are the zero knowledge proofs. These are special variants where it
is guaranteed that the prover does not provide “knowledge” to the verifier.
It is surely important to define what knowledge actually is, but one can
see it as information that can not be efficiently computed by the verifier
itself. Thus, a prover could for example prove its identity to the verifier
by convincing him that he possesses some secret information that only he
has (like an isomorphism between two very big graphs or the factorization
of two very big numbers). The properties of interactive proof systems will
allow the verifier to get convinced that the prover actually has this infor-
mation and is therefore who he claims to be. This alone is not enough for a
desired cryptographic protocol, since the prover also does not want anyone

5.3 Interactive Proof Systems 59

to “steal” his identity: he could easily prove the possession of the secret by
telling it, but this would enable the verifier to later act like he was the prover
towards third parties. The problem is that he gained knowledge. Thus, the
zero knowledge property is an additional guarantee: It protects the verifier
from this “theft”. Unfortunately, going into the details of this is out of scope
for us and material for another course.

60

A Appendix

A.1 Exercises

Exercise 1. Let Σ be an alphabet ordered under “<”. We define a lexico-
graphical order < on Σ∗ as follows: We have x < y if:

• |x| < |y| or

• |x| = |y| and ∃i ≤ |x| : x1 . . . xi−1 = y1 . . . yi−1 ∧ xi < yi

Further, we call a function f : Γ∗ → Σ∗ monotonic, if f(x) ≤ f(y) for all
x ≤ y. A language L is recursively enumerable in lexicographical order, if it is
the image14 of a monotonic, computable function. Show that a language L is
decidable if and only if it is either recursively enumerable in lexicographical
order or empty.

Exercise 2. Show the last two properties from Lemma 2.16, i.e., show that
for all A,B,C:

1. A ≤m B ∧B ≤m C =⇒ A ≤m C (Transitivity of ≤m)

2. A ≤m B ⇐⇒ A ≤m B

Exercise 3. Show that the following language is either inside or outside
one or both of the classes REC and RE:

Eq := {(〈M1〉, 〈M2〉) | L(M1) = L(M2)}

What about Eq?

Exercise 4. Show Lemma 4.7, i.e., show that for all A,B,C:

1. A ≤pm B ∧B ∈ P =⇒ A ∈ P (Closedness of P under ≤pm)

2. A ≤pm B ∧B ∈ NP =⇒ A ∈ NP (Closedness of NP under ≤pm)

3. A ≤pm B ∧B ≤pm C =⇒ A ≤pm C (Transitivity of ≤pm)

4. A ≤pm B ⇐⇒ A ≤pm B

Exercise 5. We defined ≤pm to be the polynomial time reduction and showed
that there are NP-complete problems under ≤pm reduction. One can also
show that there are P-complete problems under logarithmic space reduction
≤lm. Let ≤linm be linear time reduction, i.e., defined like ≤pm but the reduction
function is now restricted to linear time. Show that there is no P-complete
problem under ≤linm , i.e., that there is no problem A ∈ P such that ∀L ∈ P :
L ≤linm A. (Hint: Hierarchy Theorem)

14The image of a function f : X → Y is the set f(X) = {f(x) | x ∈ X}

A.2 Further reading 61

Exercise 6. Show that 1-SAT ∈ P and 2-SAT ∈ P. (Hint: For 2-SAT, write
each clause l1 ∨ l2 as an implication and interpret the set of all those impli-
cations as edges in a directed graph over the variables and their negations.
How does the graph look like if the original formula is satisfied?)

Exercise 7. Show that NODECOVER and CLIQUE are NP-complete. (Hint:
Reduce INDEPSET.)

Exercise 8. Show that HITTINGSET is NP-complete.

A.2 Further reading

References

[BC93] Daniel Pierre Bovet and Pierluigi Crescenzi. Introduction to the
Theory of Complexity. Prentice Hall International (UK) Limited,
1993.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley Publishing Company, Inc., 1994.

[Woe] Gerhard J. Woeginger. The P-versus-NP page . http://www.win.
tue.nl/~gwoegi/P-versus-NP.htm.

http://www.win.tue.nl/~gwoegi/P-versus-NP.htm
http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

	1 Introduction
	1.1 About this document
	1.2 What is Computational Complexity?

	2 Basic Computability Theory
	2.1 Problems as Formal Languages
	2.2 Model of Computation: Turing Machines
	2.3 Decidability, Undecidability, Semi-Decidability
	2.4 The Halting Problem
	2.5 More Undecidability

	3 Complexity Classes
	3.1 Landau Symbols: The O() Notation
	3.2 Time and Space Complexity
	3.3 Relations between Complexity Classes

	4 Feasible Computations: `39`42`"613A``45`47`"603AP vs. `39`42`"613A``45`47`"603ANP
	4.1 Proving vs. Verifying
	4.2 Reductions, Hardness, Completeness
	4.3 Natural `39`42`"613A``45`47`"603ANP-complete problems
	4.4 Beyond `39`42`"613A``45`47`"603ANP-completeness

	5 Advanced Complexity Concepts
	5.1 Non-uniform Complexity
	5.2 Probabilistic Complexity Classes
	5.3 Interactive Proof Systems

	A Appendix
	A.1 Exercises
	A.2 Further reading

