Introduction to Computational Complexity A 10-lectures Graduate Course

Martin Stigge, martin.stigge@it.uu.se

Uppsala University, Sweden

13.7. - 17.7.2009

Introduction

Administrative Meta-Information

- 5-Day course, Monday (13.7.) to Friday (17.7.)
- Schedule:

```
Mon (13.7.): 10:00 - 12:00, 16:30 - 18:30
Tue (14.7.): 10:00 - 12:00, 14:00 - 16:00
Wed (15.7.): 10:00 - 12:00, 14:00 - 16:00
Thu (16.7.): 10:00 - 12:00, 14:00 - 16:00
Fri (17.7.): 10:00 - 12:00, 16:30 - 18:30
```

• Lecture notes avaiable at:

```
http://www.it.uu.se/katalog/marst984/cc-st09
```

- Some small assignments at end of day
- Course credits: ??
- Course is interactive, so:

Any questions so far?

What is Computational Complexity?

- Studies intrinsic complexity of computational tasks
- Absolute Questions:
 - How much time is needed to perform the task?
 - How much resources will be needed?
- Relative Questions:
 - More difficult than other tasks?
 - Are there "most difficult" tasks?
- (Surprisingly: Many relative answers, only few absolute ones..)
- Rigorous treatment:
 - Mathematical formalisms, minimize "hand-waving"
 - Precise definitions
 - Theorems have to be proved

After all: Complexity Theory

What is Computational Complexity? (Cont.)

• Basis: Computability Theory

- Provides models of computation
- Explores their strength (expressiveness)
- Question: "What can be computed (at all)?"
- Then: Complexity Theory
 - Tries to find meaningful complexity measures
 - Tries to classify and relate problems
 - Tries to find upper and lower complexity bounds
 - Question: "What can efficiently be computed?"
- One core concern:
 - What does "efficiently" actually mean?
 - Proving vs. Verifying ($P \stackrel{?}{=} NP$ problem)

Course Outline

- Introduction
 - Basic Computability Theory
 - Formal Languages
 - Model of Computation: Turing Machines
 - Decidability, Undecidability, Semi-Decidability

2 Complexity Classes

- Landau Symbols: The $\mathcal{O}(\cdot)$ Notation
- Time and Space Complexity
- Relations between Complexity Classes
- Feasible Computations: P vs. NP
 - Proving vs. Verifying
 - Reductions, Hardness, Completeness
 - Natural NP-complete problems
 - Advanced Complexity Concepts
 - Non-uniform Complexity
 - Probabilistic Complexity Classes
 - Interactive Proof Systems

This is a theoretical course

– expect a lot of "math"!

Problems as Formal Languages

- Start with very high-level model of computation
- Assume a machine with input and output
- Formal notation for format:
 - $\Sigma = \{\sigma_1, \dots, \sigma_k\}$ is a finite set of *symbols*
 - $w = (w_1, \ldots, w_l)$ is a word over $\Sigma: \forall i : w_i \in \Sigma$

★ Write also just w₁w₂...w₁

- I is the *length* of w, also denoted |w|
- ε is the *empty word*, i.e., $|\varepsilon| = 0$
- Σ^k is the set of words of length k
- $\Sigma^* = \bigcup_{k \ge 0} \Sigma^k$ are all words over Σ
- A language is a set $L \subseteq \Sigma^*$
- Let $L_1, L_2 \subseteq \Sigma^*$, language operations:
 - ★ $L_1 \cup L_2$ (union), $L_1 \cap L_2$ (intersection), $L_1 L_2$ (difference)
 - ★ $\overline{L} := \Sigma^* L$ (complement)
 - ★ $L_1L_2 := \{w \mid \exists w_1 \in L_1, w_2 \in L_2 : w = w_1w_2\}$ (concatenation)

Problems as Formal Languages (Example)

Example: NAT

- Let $\Sigma:=\{0,1,\ldots,9\}$
- Σ^{\ast} is all strings with digits
- Let $[n]_{10}$ denote decimal representation of $n \in \mathbb{N}$
- NAT := $\{[n]_{10} \mid n \in \mathbb{N}\} \subsetneq \Sigma^*$ all representations of naturals • $010 \in \Sigma^* - NAT$
- Machine for calculating square:

Input: $w = [n]_{10} \in \Sigma^*$ Output: $v \in \Sigma^*$ with $v = [n^2]_{10}$ (Plus error-handling for $w \notin NAT$)

Problems as Formal Languages (2nd Example)

Example: PRIMES

- \bullet Let $\Sigma:=\{0,1,\ldots,9\}$ and NAT as before
- PRIMES := { $[p]_{10} | p$ is a prime number}
- Clearly: $\mathsf{PRIMES} \subsetneq \mathsf{NAT}$
- Machine *M* for checking primality:

Input: $w = [n]_{10} \in \Sigma^*$ Output: 1 if *n* is prime, 0 otherwise

- This is a *decision problem*:
 - PRIMES are the positive instances,
 - > Σ^* PRIMES (everything else) the *negative instances*
 - M has to distinguish both (it decides PRIMES)

Important concept, will come back to that later!

Model of Computation

- Input/Output format defined. What else?
- Model of Computation should:
 - Define what we mean with "computation", "actions", ...
 - Be simple and easy to use
 - ... but yet powerful
- Models: Recursive Functions, Rewriting Systems, Turing Machines, ...
- All equally powerful:

Church's Thesis

All "solvable" problems can be solved by any of the above formalisms.

• We will focus on the *Turing Machine*.

Turing Machine

• Turing Machines are like simplified computers containing:

- A tape to read/write on
 - ★ Contains squares with one symbol each
 - ★ Is used for input, output and temporary storage
 - ★ Unbounded
- A read/write head
 - * Can change the symbol on the tape at current position
 - ★ Moves step by step in either direction
- A finite state machine
 - ★ Including an initial state and final states
- Looks simple, but is very powerful
- Standard model for the rest of the course

Turing Machine: Definition

Definition (Turing Machine)

A Turing machine M is a five-tuple $M = (Q, \Gamma, \delta, q_0, F)$ where

- Q is a finite set of *states*;
- Γ is the *tape alphabet* including the blank: $\Box \in \Gamma$;
- q_0 is the *initial state*, $q_0 \in Q$;
- *F* is the set of final states, $F \subseteq Q$;
- δ is the transition function, $\delta : (Q F) \times \Gamma \rightarrow Q \times \Gamma \times \{R, N, L\}.$

Operation:

- Start in state q_0 , input w is on tape, head over its first symbol
- Each step:
 - Read current state q and symbol a at current position
 - Lookup $\delta(q, a) = (p, b, D)$
 - Change to state p, write b, move according to D
- Stop as soon as $q \in F$. Left on tape: Output

Turing Machine: Configuration

- Configuration (w, q, v) denotes status after each step:
 - ► Tape contains wv (with infinitely many □ around)
 - Head is over first symbol of v
 - Machine is in state q
- Start configuration: (ε, q_0, w) if input is w
- End configuration: (v, q, z) for a $q \in F$
 - Output is z, denoted by M(w)
 - In case machine doesn't halt (!): M(w) = ↗

Turing Machine: Step Relation

• Step relation: Formalizes semantics of Turing machine

Definition (Step Relation)

Let $M = (Q, \Gamma, \delta, q_0, F)$, define \vdash for all $w, v \in \Gamma^*, a, b \in \Gamma$ and $q \in Q$ as:

$$(wa, q, bv) \vdash \begin{cases} (wac, p, v) & \text{if } \delta(q, b) = (p, c, R), \\ (wa, p, cv) & \text{if } \delta(q, b) = (p, c, N), \\ (w, p, acv) & \text{if } \delta(q, b) = (p, c, L). \end{cases}$$

- α reaches β in 1 step: $\alpha \vdash \beta$
- α reaches β in k steps: $\alpha \vdash^k \beta$
- α reaches β in any number of steps: $\alpha \vdash^* \beta$

Turing Machine: The Universal Machine

- Turing machine model is quite simple
- Can be easily simulated by a human
 - Provided enough pencils, tape space and patience
- Important result: Machines can simulate machines
 - Turing machines are *finite* objects!
 - Effective encoding into words over an alphabet
 - Also configurations are *finite*! Encode them also
- Simulator machine U only needs to
 - Receive an encoded M as input
 - Input of *M* is *w*, give that also to *U*
 - U maintains encoded configurations of M and applies steps

Turing Machine: The Universal Machine (Cont.)

• Let $\langle M \rangle$ be encoding of machine M.

Theorem (The Universal Machine)

There exists a universal Turing machine U, such that for all Turing machines M and all words $w \in \Sigma^*$:

 $U(\langle M \rangle, w) = M(w)$

In particular, U does not halt iff 1 M does not halt.

(Without proof.)

¹ "if and only if"

Martin Stigge (Uppsala University, SE)

Turing Machine: Transducers and Acceptors

- Definition so far: Receive input, compute output
- We call this a *transducer*:
 - Interpret a TM M as a function $f: \Sigma^* \to \Sigma^*$
 - All such f are called computable functions
 - Partial functions may be undefined for some inputs w
 - ★ In case *M* does not halt for them $(M(w) = \nearrow)$
 - Total functions are defined for all inputs
- For decision problems L: Only want a positive or negative answer
- We call this an *acceptor*:
 - Interpret M as halting in
 - ★ Either state q_{yes} for positive instances $w \in L$
 - ★ Or in state q_{no} for negative instances $w \notin L$
 - Output does not matter, only final state
 - ► *M* accepts the language *L*(*M*):

$$L(M) := \{w \in \Sigma^* \mid \exists y, z \in \Gamma^* : (\varepsilon, q_0, w) \vdash^* (y, q_{yes}, z)\}$$

• Rest of the course: Mostly acceptors

Turing Machine: Multiple Tapes

- Definition so far: Machine uses one tape
- More convenient to have k tapes (k is a constant)
 - As dedicated input/output tapes
 - To save intermediate results
 - To precisely measure used space (except input/output space)
- Define this as *k*-tape Turing machines
 - Still only one state, but k heads
 - Equivalent to 1-tape TM in terms of expressiveness (Encode a "column" into one square)
 - Could be more efficient, but not much
- Rest of the course: *k*-tape TM with dedicated input/output tapes

Turing Machine: Non-determinism

- Definition so far: Machine is deterministic
 - Exactly one next step possible
- Extension: Allow different possible steps

 $\delta: (Q - F) \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{R, N, L\})$

- Machine chooses non-deterministically which step to do
 - Useful to model uncertainty in a system
 - Imagine behaviour as a *computation tree*
 - Each path is one possible computation
 - Accepts w iff there is a path to q_{yes} (accepting path)
- Not a real machine, rather a theoretical model
- Will see another characterization later
- Expressiveness does not increase in general (see following Theorem)

Turing Machine: Non-determinism (Cont.)

Theorem

Given a non-deterministic TM N, one can construct a deterministic TM M with L(M) = L(N). Further, if N(w) accepts after t(w) steps, then there is c such that M(w)accepts after at most $c^{t(w)}$ steps.

Remark

- Exponential blowup concerning speed
- Ignoring speed, expressiveness is the same
- Note that *N* might not terminate on certain inputs

Turing Machine: Non-determinism (Cont. 2)

Proof (Sketch).

- Given a non-deterministic N and an input w
- Search the computation tree of N
- Breadth-first technique: Visit all "early" configurations first
 - Since there may be infinite paths
 - For each $i \ge 0$, visit all configurations up to depth i
 - If *N* accepts *w*, we will find accepting configuration at a depth *t* and halt in q_{yes}
 - If *N* rejects *w*, we halt in q_{no} or don't terminate
- Let d be maximal degree of non-determinism (choices of δ)
- Above takes at most $\sum_{i=0}^{t} d^{i}$ steps
- Can be bounded from above by c^t with a suitable constant c

Summary (Turing Machine)

- Simple model of computation, but powerful
- Clearly defined syntax and semantics
- May accept languages or compute functions
- May use *multiple tapes*
- Non-determinism does not increase expressiveness
- A Universal Machine exists, simulating all other machines

Remark

The machines we use from now on

- are deterministic
- are acceptors,
- with k tapes

(except stated otherwise).

Deciding a Problem

• Recall: Turing Machines running with input w may

- halt in state q_{yes},
- halt in state q_{no}, or
- run without halting.

• Given problem L and instance w, want to decide whether $w \in L$:

- Using a machine M
- If $w \in L$, M should halt in q_{yes}
- If $w \notin L$, *M* should halt in q_{no}
- In particular: Always terminate! (Little use otherwise...)

Decidability and Undecidability

Definition

L is called *decidable*, if there exists a TM *M* with L(M) = L that *halts on all inputs*. REC is the set of all decidable languages.

- We can *decide* the status of w by just running M(w).
- Termination guaranteed, we won't wait infinitely
- "M decides L"
- If $L \notin \text{REC}$, then L is undecidable

Decidability and Undecidability: Example

Example (PRIMES \in REC)

- Recall PRIMES := $\{[p]_{10} | p \text{ is a prime number}\}$
- Can be decided:
 - Given $w = [n]_{10}$ for some n
 - Check for all $i \in (1, n)$ whether n is multiple of i
 - If an i found: Halt in q_{no}
 - Otherwise, if all i negative: Halt in q_{yes}
- Can be implemented with a Turing machine
- Always terminates (only finitely many i)
- Thus: $\mathsf{PRIMES} \in \mathsf{REC}$

Semi-Decidability

Definition

L is called *semi-decidable*, if there exists a TM M with L(M) = L. RE is the set of all semi-decidable languages.

- Note the missing "halts on all inputs"!
- We can only "half-decide" the status of a given w:
 - Run M, wait for answer
 - If $w \in L$, M will halt in q_{yes}
 - If $w \notin L$, M may not halt
 - We don't know: $w \notin L$ or too impatient?
- "M semi-decides L"

Class Differences

- Questions at this point:
 - Are there undecidable problems?
 - 2 Can we at least semi-decide some of them?
 - In the second second
- Formally: REC $\stackrel{?}{\subsetneq}$ RE $\stackrel{?}{\subsetneq} \mathcal{P}(\Sigma^*)$
- Subtle difference between REC and RE: Termination guarantee

Properties of Complementation

Theorem

L ∈ REC ⇐⇒ L̄ ∈ REC. ("closed under taking complements")
L ∈ REC ⇐⇒ (L ∈ RE ∧ L̄ ∈ RE).

Proof (First part).

- Direction " \Longrightarrow ":
 - Assume M decides L and halts always
 - Construct M': Like M, but swap q_{yes} and q_{no}
 - M' decides L and halts always!
- Direction "←":
 - Exact same thing.

Properties of Complementation

Theorem

L ∈ REC ⇐⇒ L̄ ∈ REC. ("closed under taking complements")
L ∈ REC ⇐⇒ (L ∈ RE ∧ L̄ ∈ RE).

Proof (Second part).

- Direction " \Longrightarrow ":
 - Follows from $\mathsf{REC} \subseteq \mathsf{RE}$ and first part
- Direction "←":
 - Let M_1, M_2 with $L(M_1) = L$ and $L(M_2) = \overline{L}$
 - Given w, simulate $M_1(w)$ and $M_2(w)$ step by step, in turns
 - Eventually one of them will halt in q_{yes}
 - If it was M₁, halt in q_{yes}
 - It it was M₂, halt in q_{no}
 - Thus, we always halt (and decide L)!

The Halting Problem

- Approach our three questions:
 - Are there undecidable problems?
 - ② Can we at least semi-decide some of them?
 - In the second second
- Classical problem: Halting Problem
 - Given a program M (Turing machine!) and an input w
 - ► Will *M*(*w*) terminate?
 - Natural problem of great practical importance
- Formally: Let $\langle M \rangle$ be an encoding of M

Definition (Halting Problem)

H is the set of all Turing machine encodings $\langle M \rangle$ and words *w*, such that *M* halts on input *w*:

$$H := \{(\langle M \rangle, w) \mid M(w) \neq \nearrow\}$$

Undecidability of the Halting Problem

Theorem

 $H \in \mathsf{RE} - \mathsf{REC}$

Proof (First part).

We show $H \in RE$:

- Need to show: There is a TM M', such that
 - Given *M* and *w*
 - If M(w) halts, M' accepts (halts in q_{yes})
 - If M(w) doesn't halt, M' halts in q_{no} or doesn't halt
- Construct M': Just simulate M(w)
 - If simulation halts, accept (i.e. halt in q_{yes})
 - If simulation doesn't halt, we also won't
- Thus: L(M') = H

Undecidability of the Halting Problem (Cont.)

Theorem

 $H \in \mathsf{RE} - \mathsf{REC}$

Proof (Second part).

We show $H \notin \text{REC}$:

- Need to show: There is no TM M_H , such that
 - Given M and w
 - If M(w) halts, M_H accepts (halts in q_{yes})
 - If M(w) doesn't halt, M_H rejects (halts in q_{no})
 - Note: M_H always halts!
- We can't use simulation!
 - What if it doesn't halt?
- New approach: Indirect proof
 - Assume there is M_H with above properties
 - Show a contradiction

Undecidability of the Halting Problem (Cont. 2)

I	neorem	
		_

 $H \in \mathsf{RE} - \mathsf{REC}$

Proof (Second part, cont.)

We show $H \notin \text{REC}$: Assume there is M_H that always halts

- Build another machine N:
 - On input w, simulate $M_H(w, w)$
 - If simulation halts in q_{yes} , enter infinite loop
 - If simulation halts in q_{no}, accept (i.e. halt in q_{yes})
- *N* is Turing machine and $\langle N \rangle$ its encoding. *Does* $N(\langle N \rangle)$ *halt?*
- Assume "yes, $N(\langle N \rangle)$ halts":
 - By construction of N, $M_H(\langle N \rangle, \langle N \rangle)$ halted in q_{no}
 - Definition of H: $N(\langle N \rangle)$ does not halt. Contradiction!
- Assume "no, $N(\langle N \rangle)$ doesn't halt":
 - By construction of N, $M_H(\langle N \rangle, \langle N \rangle)$ halted in q_{yes}
 - Definition of H: $N(\langle N \rangle)$ does halt. Contradiction!
- N can not exist! $\implies M_H$ can not exist.

Class Differences: Results

- Know now: $H \in RE REC$, thus: REC $\subsetneq RE$
- What about RE and $\mathcal{P}(\Sigma^*)$?
 - Is there an $L \subseteq \Sigma^*$ that's not even semi-decidable?
- Counting argument:
 - ▶ RE is *countably* infinite: Enumerate all Turing machines
 - P(Σ*) is uncountably infinite: Σ* is countably infinite

Corollary

 $\mathsf{REC} \subsetneq \mathsf{RE} \subsetneq \mathcal{P}(\Sigma^*)$

Remark

- Actually, we even know one of those languages: $\overline{H} \notin RE$
- Otherwise, H would be decidable: $(H \in \mathsf{RE} \land \overline{H} \in \mathsf{RE}) \implies H \in \mathsf{REC}$

Reductions

- We saw: Some problems are harder than others
- Possible to compare them directly?
- Concept for this: *Reductions*
 - Given problems A and B
 - Assume we know how to solve A using B
 - Then: Sufficient to find out how to solve B for solving A
 - We reduced A to B
 - Consequence: A is "easier" than B
- Different formal concept established
 - Differ in how B is used when solving A
 - We use Many-one reductions

Reductions: Definition

Definition (Many-one Reduction)

 $A \subseteq \Sigma^*$ is many-one reducible to $B \subseteq \Sigma^*$ $(A \leq_m B)$, if there is $f : \Sigma^* \to \Sigma^*$ (computable and total), such that

$$\forall w \in \Sigma^* : w \in A \iff f(w) \in B$$

f the reduction function.

- f maps positive to positive instances, negative to negative
- Impact on decidability:
 - Given problems A and B with $A \leq_m B$
 - And given M_f calculating reduction f
 - And given M_B deciding B
 - Decide A by simulating M_f and on its output M_B

Reductions: Properties

Lemma

For all A, B and C the following hold: a $A \leq_m B \land B \in \text{REC} \implies A \in \text{REC}$ a $A \leq_m B \land B \in \text{RE} \implies A \in \text{REC}$ b $A \leq_m B \land B \leq_m C \implies A \leq_m C$ c $A \leq_m B \iff \overline{A} \leq_m \overline{B}$

(Closedness of REC under \leq_m) (Closedness of RE under \leq_m) (Transitivity of \leq_m)

Proof.

- First two: We just discussed this
- Second two: Easy exercise
Reductions: Example

Example (The Problems)

- Need to introduce two problems: REACH and REG-EMPTY
- First Problem: The reachability problem:

 $\mathsf{REACH} := \{ (G, u, v) \mid \text{there is a path from } u \text{ to } v \text{ in } G \}$

- G is a finite directed graph; u, v are nodes in G
- Question: "Is v reachable from u?"
- \blacktriangleright Easily solvable using standard breath first search: REACH \in REC
- Second Problem: Emptiness problem for regular languages

 $\mathsf{REG}\mathsf{-}\mathsf{EMPTY} := \{ \langle D \rangle \mid L(D) = \emptyset \}$

- D encodes a Deterministic Finite Automaton
- Question: "Is the language D accepts empty?"

Reductions: Example (Cont.)

Example (The Reduction)

- Will reduce REG-EMPTY to REACH
- Idea: Interpret DFA D as a graph
 - Is a final state reachable from initial state?
 - Thus: Start node u is initial state
 - Problem: Want just one target node v, but many final states possible
 - Solution: Additional node v with edges from final states

• Result:
$$f$$
 with $\langle D \rangle \mapsto (G, u, v)$

- L(D) empty $\iff u$ can not reach v
- Thus: REG-EMPTY $\leq_m \overline{\text{REACH}}$
- Remark: Implies REG-EMPTY ∈ REC (Closedness of REC under complement!)

A Second Example: Halting Problem with empty input

Lemma

The Halting Problem with empty input is undecidable, i.e.:

 $H_{\varepsilon} := \{ \langle M \rangle \mid M(\varepsilon) \neq \nearrow \} \notin \mathsf{REC}$

Proof.

- Already know: $H \notin \text{REC}$
- Sufficient to find a reduction $H \leq_m H_{\varepsilon}$ (Closedness!)
- Given is $(\langle M \rangle, w)$: A machine M with input w
- Idea: Encode w into the states
- Construct a new machine M':
 - Ignore input and write w on tape (is encoded in states of M')
 - Simulate M
- $f: (\langle M \rangle, w) \mapsto \langle M' \rangle$ is computable: Simple syntactical manipulations!
- Reduction property by construction:
 - If $(\langle M \rangle, w) \in H$, then M' terminates with all inputs (also with empty input)
 - ▶ If $(\langle M \rangle, w) \notin H$, then M' doesn't ever terminate (also not with empty input)

Rice's Theorem: Introduction

- We know now: Halting is undecidable for Turing machines
- Even for just empty input!
- Are other properties undecidable?
- (Maybe halting is just a strange property..)
- Will see now: No "non-trivial" behavioural property is decidable!
 - For Turing machines
 - Simpler models behave better (DFA..)
 - Non-trivial: Some Turing machines have it, some don't
- High practical relevance:
 - Either have to restrict model (less expressive)
 - Or only approximate answers (less precise)
- Formally: Rice's Theorem

Rice's Theorem: Formal formulation

Theorem (Rice's Theorem)

Let C be a non-trivial class of semi-decidable languages, i.e., $\emptyset \subsetneq C \subsetneq RE$. Then the following L_C is undecidable:

 $L_{\mathcal{C}} := \{ \langle M \rangle \mid L(M) \in \mathcal{C} \}$

Proof (Overview).

- First assume $\emptyset \notin C$
- Then there must be a non-empty $A \in C$ (since C is non-empty)
- We will reduce H to L_C
- Idea:
 - We are given M with input w
 - Simulate M(w)
 - If it halts, we will semi-decide A
 - If it doesn't halt, we will semi-decide \emptyset (never accept)
 - This is the reduction!

Rice's Theorem: Formal formulation (Cont.)

Theorem (Rice's Theorem)

Let C be a non-trivial class of semi-decidable languages, i.e., $\emptyset \subsetneq C \subsetneq RE$. Then the following L_C is undecidable:

$$L_{\mathcal{C}} := \{ \langle M \rangle \mid L(M) \in \mathcal{C} \}$$

Proof (Details).

- Recall: $\emptyset \notin C$, $A \in C$, let M_A be machine for A
- Construct a new machine M':
 - 1 Input y, first simulate M(w) on second tape
 - 2 If M(w) halts, simulate $M_A(y)$
- Reduction property by construction:
 - If $(\langle M \rangle, w) \in H$, then L(M') = A, thus $\langle M' \rangle \in L_{\mathcal{C}}$
 - If $(\langle M \rangle, w) \notin H$, then $L(M') = \emptyset$, thus $\langle M' \rangle \notin L_{\mathcal{C}}$
- What about the case $\emptyset \in C$? Similar construction showing $H \leq_m \overline{L_C}$

Rice's Theorem: Examples

Example

• The following language is *undecidable*:

 $L := \{ \langle M \rangle \mid L(M) \text{ contains at most 5 words} \}$

- \bullet Follows from Rice's Theorem since $\mathcal{C} \neq \emptyset$ and $\mathcal{C} \neq \mathsf{RE}$
- Thus: For any k, can't decide if an M only accepts at most k inputs

Example

• The following language is *decidable*:

 $L := \{ \langle M \rangle \mid M \text{ contains at most 5 states} \}$

- Easy check by looking at encoding of M
- Not a *behavioural* property

Summary Computability Theory

- Defined a model of computation: Turing machines
- Explored properties:
 - Decidability and Undecidability
 - Semi-Decidability
 - Example: The Halting problem is undecidable
- Reductions as a *relative* concept
- Closedness allows using them for *absolute* results
- Rice's Theorem:

All non-trivial behavioural properties of TM are undecidable.

Course Outline

- Introduction
- Basic Computability Theory
 - Formal Languages
 - Model of Computation: Turing Machines
 - Decidability, Undecidability, Semi-Decidability

Complexity Classes

- Landau Symbols: The $\mathcal{O}(\cdot)$ Notation
- Time and Space Complexity
- Relations between Complexity Classes
- Feasible Computations: P vs. NP
 - Proving vs. Verifying
 - Reductions, Hardness, Completeness
 - Natural NP-complete problems
- Advanced Complexity Concepts
 - Non-uniform Complexity
 - Probabilistic Complexity Classes
 - Interactive Proof Systems

Restricted Resources

- Previous Chapter: Computability Theory
 - "What can algorithms do?"
- Now: Complexity Theory
 - "What can algorithms do with restricted resources?"
 - Resources: Runtime and memory
- Assume the machines always halt in q_{yes} or q_{no}
 - But after how many steps?
 - How many tape positions were necessary?

Landau Symbols

- Resource bounds will depend on input size
- Described by functions $f : \mathbb{N} \to \mathbb{N}$
- Need ability to express "grows in the order of"
 - Consider $f_1(n) = n^2$ and $f_2(n) = 5 \cdot n^2 + 3$
 - Eventually, n^2 dominates for large n
 - Both express "quadratic growth"
 - Want to see all $c_1 \cdot n^2 + c_2$ equivalent
 - Asymptotic behaviour
- Formal notation for this: $\mathcal{O}(n^2)$
- Will provide a kind of upper bound of asymptotic growth

Landau Symbols: Definition

Definition

Let $g : \mathbb{N} \to \mathbb{N}$. $\mathcal{O}(g)$ denotes the set of all functions $f : \mathbb{N} \to \mathbb{N}$ such that there are n_0 and c with

$$\forall n \geq n_0 : f(n) \leq c \cdot g(n).$$

We also just write f(n) = O(g(n)).

Lemma (Alternative characterization) For $f, g : \mathbb{N} \to \mathbb{N}_{>0}$ the following holds: $f \in \mathcal{O}(g) \iff \exists c > 0 : \limsup_{n \to \infty} \frac{f(n)}{g(n)} \le c$

(Without proof.)

Landau Symbols

Landau Symbols: Examples

• We have
$$5 \cdot n^2 + 3 = \mathcal{O}(n^2)$$

- One even writes $\mathcal{O}(n) = \mathcal{O}(n^2)$ (meaning " \subseteq ")
- Both is abuse of notation! Not symmetric: $\mathcal{O}(n^2) \neq \mathcal{O}(n)!$

Examples

- $n \cdot \log(n) = \mathcal{O}(n^2)$
- $n^c = \mathcal{O}(2^n)$ for all constants c
- O(1) are the bounded functions
 - $n^{\mathcal{O}(1)}$ are the functions bounded by a polynomial
- Other symbols exist for lower bounds (Ω) , strict bounds (o, ω) and "grows equally" (Θ)

Proper complexity functions

- Landau-Symbols classify functions according to growth
- Which functions to consider for resource bounds?
- Only "proper" ones:

Definition

Let $f : \mathbb{N} \to \mathbb{N}$ be a computable function.

- f is time-constructible if there exists a TM which on input 1^n stops after $\mathcal{O}(n + f(n))$ steps.
- If is space-constructible if there exists a TM which on input 1ⁿ outputs 1^{f(n)} and does not use more than O(f(n)) space.
 - This allows us to assume "stopwatches"
 - All common "natural" functions have these properties

Resource measures

Definition

- The runtime time_M(w) of a TM M with input w is defined as: time_M(w) := max{t ≥ 0 | ∃y, z ∈ Γ*, q ∈ F : (w, q₀, ε) ⊢^t (y, q, z)}
- ② If, for all inputs w and a $t : \mathbb{N} \to \mathbb{N}$ it holds that time_M(w) ≤ t(|w|), then M is t(n)-time-bounded. Further:

 $\mathsf{DTIME}(t(n)) := \{L(M) \mid M \text{ is } t(n)\text{-time-bounded}\}\$

- The required space space_M(w) of a TM M with input w is defined as: space_M(w) := max{n ≥ 0 | M uses n squares on a working tape}
- ④ If for all inputs *w* and an *s* : $\mathbb{N} \to \mathbb{N}$ it holds that space_{*M*}(*w*) ≤ *s*(|*w*|), then *M* is *s*(*n*)-space-bounded. Further:

 $\mathsf{DSPACE}(s(n)) := \{L(M) \mid M \text{ is } s(n)\text{-space-bounded}\}$

Resource measures (Cont.)

Definition

I For functions, we have:

 $\mathsf{FTIME}(t(n)) := \{f \mid \exists M \text{ being } t(n)\text{-time-bounded and computing } f\}$

For non-deterministic M, time and space are as above, and we have: NTIME(t(n)) := {L(M) | M is non-det. and t(n)-time-bounded} NSPACE(s(n)) := {L(M) | M is non-det. and s(n)-space-bounded}

- Recall: Non-deterministic machines can choose different next steps
 - Can be imagined as a *computation tree*
 - Time and space bounds for all paths in the tree
- Note: space M(w) is for the working tapes
 - Only they "consume memory" during the computation
 - Input (read-only) and output (write-only) should not count
 - Allows notion of *sub-linear space*, e.g., log(|w|)

Common Complexity Classes

- Deterministic *time complexity* classes:
 - Linear time:

$$\mathsf{LINTIME} := \bigcup_{c \ge 1} \mathsf{DTIME}(cn + c) = \mathsf{DTIME}(\mathcal{O}(n))$$

Polynomial time:

$$\mathsf{P} := \bigcup_{c \ge 1} \mathsf{DTIME}(n^c + c) = \mathsf{DTIME}(n^{\mathcal{O}(1)})$$

Polynomial time functions:

$$\mathsf{FP} := \bigcup_{c \ge 1} \mathsf{FTIME}(n^c + c) = \mathsf{FTIME}(n^{\mathcal{O}(1)})$$

Exponential time

$$\mathsf{EXP} := \bigcup_{c \ge 1} \mathsf{DTIME}(2^{n^c + c}) = \mathsf{DTIME}\left(2^{n^{\mathcal{O}(1)}}\right)$$

Common Complexity Classes (Cont.)

- Deterministic space complexity classes:
 - Logarithmic space:

$$L := \mathsf{DSPACE}(\mathcal{O}(\mathsf{log}(n)))$$

Polynomial space:

$$\mathsf{PSPACE} := \mathsf{DSPACE}(n^{\mathcal{O}(1)})$$

Exponential space:

$$\mathsf{EXPSPACE} := \mathsf{DSPACE}\left(2^{n^{\mathcal{O}(1)}}\right)$$

 Non-deterministic classes defined similarly: NLINTIME, NP, NEXP, NL, NPSPACE and NEXPSPACE

Common Complexity Classes: Example

Example (REACH)

• Consider again the *reachability problem*:

 $\mathsf{REACH} := \{(G, u, v) \mid \text{there is a path from } u \text{ to } v \text{ in } G\}$

- Decidable but how much space is needed?
- Non-deterministically: $REACH \in NL$
 - Explore graph beginning with u
 - Choose next node non-deterministically, for at most n steps
 - If there is a path to v, it can be found that way
 - Space: For step counter and number of current node: $O(\log(n))$
- Deterministically: $\mathsf{REACH} \in \mathsf{DSPACE}(\mathcal{O}(\log(n)^2))$
 - Sophisticated recursive algorithm
 - Split path p of length $\leq n$:
 - $p = p_1 p_2$ with p_1, p_2 of length $\leq n/2$
 - Iterate over all intermediate nodes
 - Space: Recursion stack depth log(n) and elements log(n): $O(log(n)^2)$

Complexity Class Relations

• Clear from definitions:

$\mathsf{LINTIME} \subseteq \mathsf{P} \subseteq \mathsf{EXP}$

• Same relation for non-deterministic classes:

 $\mathsf{NLINTIME} \subseteq \mathsf{NP} \subseteq \mathsf{NEXP}$

- Only inclusion, no separation yet:
 - Know that LINTIME \subseteq P
 - But is there $L \in P LINTIME$?
 - Such an L would separate LINTIME and P
- Will now see a very "fine-grained" separation result

Hierarchy Theorem

Theorem (Hierarchy Theorem)

• Let $f:\mathbb{N}\to\mathbb{N}$ be time-constructible and $g:\mathbb{N}\to\mathbb{N}$ with

$$\liminf_{n\to\infty}\frac{g(n)\cdot\log(g(n))}{f(n)}=0.$$

Then there exists $L \in \mathsf{DTIME}(f(n)) - \mathsf{DTIME}(g(n))$.

• Let $f:\mathbb{N}\to\mathbb{N}$ be space-constructible and $g:\mathbb{N}\to\mathbb{N}$ with

$$\liminf_{n\to\infty}\frac{g(n)}{f(n)}=0$$

Then there exists $L \in DSPACE(f(n)) - DSPACE(g(n))$.

(Without proof.)

Hierarchy Theorem: Examples

Example

- Let $C_k := \mathsf{DTIME}(\mathcal{O}(n^k))$
- Using time hierarchy theorem:

 $\mathcal{C}_1 \subsetneq \mathcal{C}_2 \subsetneq \mathcal{C}_3 \subsetneq \dots \qquad (\text{Infinite hierarchy})$

- Means: Let p(n) and q(n) be polynomials, deg $p < \deg q$
- Then there is *L* such that:
 - Decidable in $\mathcal{O}(q(n))$ time
 - Not decidable in $\mathcal{O}(p(n))$ time
- Remark: Theorem states "more time means more power"
- Also the case with REC \subsetneq RE:
 - REC: Time bounded: Always halt
 - RE: May not halt, "infinite time"

Determinism vs. Non-determinism

Theorem

For each space-constructible function $f : \mathbb{N} \to \mathbb{N}$, the following holds:

```
\mathsf{DTIME}(f) \subseteq \mathsf{NTIME}(f) \subseteq \mathsf{DSPACE}(f) \subseteq \mathsf{NSPACE}(f)
```

Proof (Overview).

- First and third clear: Determinism is special case
- Now show $NTIME(f) \subseteq DSPACE(f)$
- Time bounded by f(n) implies space bounded by f(n)
- Still need to remove non-determinism
- Key idea:
 - Time bound f(n): At most f(n) non-deterministic choices
 - Computation tree at most f(n) deep
 - Represent paths by strings of size f(n)
 - Simulate all paths by enumerating the strings

Determinism vs. Non-determinism (Cont.)

Theorem

For each space-constructible function $f : \mathbb{N} \to \mathbb{N}$, the following holds:

```
\mathsf{DTIME}(f) \subseteq \mathsf{NTIME}(f) \subseteq \mathsf{DSPACE}(f) \subseteq \mathsf{NSPACE}(f)
```

Proof (Details).

- Want to show $NTIME(f) \subseteq DSPACE(f)$
- Let L ∈ NTIME(f) and N corresponding machine
- Let d be maximal degree of non-determinism
- Build new machine M:
 - **①** Systematically generate words $c \in \{1, \ldots, d\}^{f(n)}$
 - 2 Simulate N with non-deterministic choices c
 - Seperate until all words generated (overwrite c each time)
- Simulation is deterministic and needs only $\mathcal{O}(f(n))$ space
 - (But takes exponentially long!)

Deterministic vs. Non-deterministic Space

• Theorem implies:

$\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{PSPACE}\subseteq\mathsf{NPSPACE}$

- Thus, in context of polynomial bounds:
 - Non-determinism "beats" determinism
 - Space "beats" time
- But are these inclusions strict?
- Will now see: PSPACE = NPSPACE
- Recall: $\mathsf{REACH} \in \mathsf{DSPACE}(\mathcal{O}(\log(n)^2))$

Deterministic vs. Non-deterministic Space (Cont.)

Theorem (Savitch)

For each space-constructible function $f : \mathbb{N} \to \mathbb{N}$, the following holds:

```
\mathsf{NSPACE}(f) \subseteq \mathsf{DSPACE}(f^2)
```

Proof (Sketch).

- Let $L \in \mathsf{NSPACE}(f)$ and M_L corresponding non-deterministic TM
- Consider configuration graph of M_L for an input w
 - Each node is a configuration
 - Edges are given by step relation \vdash
 - M_L space bounded, thus only $c^{f(|w|)}$ configurations
- Assume just one final accepting configuration
- Question: "Is there a path from initial to final configuration?"
- Reachability problem!

• Solve it with
$$\mathcal{O}\left(\log\left(c^{f(n)}
ight)^{2}
ight)=\mathcal{O}(f(n)^{2})$$
 space

Polynomial Complexity Classes

Corollary

$\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{PSPACE}=\mathsf{NPSPACE}$

- Previous theorem implies NPSPACE \subseteq PSPACE
- First two inclusions: Difficult, next chapter!
- Following concept will be of use:

Definition

Let $\mathcal{C} \subseteq \mathcal{P}(\Sigma^*)$ be a class of languages. We define:

$$\operatorname{co-} \mathcal{C} := \{ \overline{L} \mid L \in \mathcal{C} \}$$

• For deterministic $C \subseteq \mathsf{REC}$: $C = \mathsf{co-}C$

Complementary Classes: Asymmetries

- Consider RE and co- RE:
 - For RE the TM always halts on the positive inputs
 - ★ "For $x \in L$ there is a finite path to q_{yes} "
 - For co- RE it always halts on the negative inputs
 - ★ "For $x \notin L$ there is a finite path to q_{no} "
 - RE \neq co- RE (Halting Problem, ..)
 - REC = co- REC and REC = RE \cap co- RE
- Consider NPSPACE and co- NPSPACE:
 - ▶ We know PSPACE = NPSPACE and PSPACE = co- PSPACE
 - Thus NPSPACE = co- NPSPACE
- What about P, NP and co- NP?
 - Looks like RE situation:
 - ★ NP: "For $x \in L$ there is a bounded path to q_{yes} "
 - ★ co-NP: "For $x \notin L$ there is a *bounded* path to q_{no} "
 - Surprisingly: Relationship not known!

Course Outline

- Introduction
 - Basic Computability Theory
 - Formal Languages
 - Model of Computation: Turing Machines
 - Decidability, Undecidability, Semi-Decidability

2 Complexity Classes

- Landau Symbols: The $\mathcal{O}(\cdot)$ Notation
- Time and Space Complexity
- Relations between Complexity Classes
- Feasible Computations: P vs. NP
 - Proving vs. Verifying
 - Reductions, Hardness, Completeness
 - Natural NP-complete problems
 - Advanced Complexity Concepts
 - Non-uniform Complexity
 - Probabilistic Complexity Classes
 - Interactive Proof Systems

Course Outline

- Introduction
- Basic Computability Theory
 - Formal Languages
 - Model of Computation: Turing Machines
 - Decidability, Undecidability, Semi-Decidability

Complexity Classes

- Landau Symbols: The $\mathcal{O}(\cdot)$ Notation
- Time and Space Complexity
- Relations between Complexity Classes

Feasible Computations: P vs. NP

- Proving vs. Verifying
- Reductions, Hardness, Completeness
- Natural NP-complete problems
- Advanced Complexity Concepts
 - Non-uniform Complexity
 - Probabilistic Complexity Classes
 - Interactive Proof Systems

Feasible Computations

- Will now focus on classes P and NP
- Polynomial time bounds as "feasible", "tractable", "efficient"
 - Polynomials grow only "moderately"
 - Many practical problems polynomial
 - Often with small degrees $(n^2 \text{ or } n^3)$

Recall P and NP

- Introduced P and NP via Turing machines:
 - Polynomial time bounds
 - Deterministic vs. non-deterministic operation
- Recall P: For $L_1 \in P$
 - Existence of a deterministic TM M
 - Existence of a polynomial $p_M(n)$
 - For each input $x \in \Sigma^*$ runtime $\leq p_M(|x|)$
- Recall NP: For $L_2 \in NP$
 - Existence of a non-deterministic TM N
 - Existence of a polynomial $p_N(n)$
 - For each input $x \in \Sigma^*$ runtime $\leq p_N(|x|)$
 - For all computation paths
- Theoretical model practical significance?
- Introduce now a new characterization of NP

A new NP characterization

Definition

Let $R \in \Sigma^* \times \Sigma^*$ (binary relation). *R* is *polynomially bounded*, if there exists a polynomial p(n), such that:

$$\forall (x,y) \in R : |y| \le p(|x|)$$

Lemma

NP is the class of all L such that there exists a polynomially bounded $R_L \in \Sigma^* \times \Sigma^*$ satisfying:

• $R_L \in P$, and

•
$$x \in L \iff \exists w : (x, w) \in R_L.$$

We call w a witness (or proof) for $x \in L$ and R_L the witness relation.

Proving vs. Verifying

- For $L \in P$:
 - Machine must decide membership of x in polynomial time
 - Interpret as "finding a proof" for $x \in L$
- For $L \in NP$: (new characterization)
 - Machine is provided a witness w
 - Interpret as "verifying the proof" for $x \in L$
- *Efficient* proving and verifying procedures:
 - ► For P, runtime is bounded
 - For NP, also witness size is bounded
- Write $L \in NP$ as:

$$L = \{x \in \Sigma^* \mid \exists w \in \Sigma^* : (x, w) \in R_L\}$$

Proving vs. Verifying (Cont.)

- P-problems: solutions can be efficiently found
- NP-problems: solutions can be efficiently checked
- Checking certainly a prerequisite for finding (thus $P \subseteq NP$)
- But is finding *more* difficult?
 - Intuition says: "Yes!"
 - Theory says: "We don't know." (yet?)
- Formal formulation:

$$P \stackrel{?}{=} NP$$

- One of the most important questions of computer science!
 - ► Many proofs for either "=" or "≠"
 - None correct so far
 - Clay Mathematics Institute offers \$1.000.000 prize

A new NP characterization (Cont.)

Lemma (Revisited)

NP is the class of all L such that there exists a polynomially bounded $R_L \in \Sigma^* \times \Sigma^*$ satisfying:

- $R_L \in P$, and
- $x \in L \iff \exists w : (x, w) \in R_L$. (w is a witness)

Proof (First part).

- First, let $L \in NP$. Let N be the machine with $p_N(n)$ time bound.
- Want to show: R_L as above exists
- Idea:
 - On input x, all computations do $\leq p_N(|x|)$ steps
 - $x \in L$ iff an *accepting* computation exists
 - \blacktriangleright Encode computation (non-deterministic choices) into w
 - All such pairs (x, w) define R_L
- R_L has all above properties
A new NP characterization (Cont. 2)

Lemma (Revisited)

NP is the class of all L such that there exists a polynomially bounded $R_L \in \Sigma^* \times \Sigma^*$ satisfying:

- $R_L \in P$, and
- $x \in L \iff \exists w : (x, w) \in R_L$. (w is a witness)

Proof (Second part).

- Now, let L as above, using R_L bounded by p(n)
- Want to show: Non-deterministic N exists, polynomially bounded
- Idea to construct N:
 - R_L bounds length of w by p(|x|)
 - $R_L \in P$: There is a *M* for checking R_L
 - N can "guess" w first
 - Then simulate M for checking $(x, w) \in R_L$
 - ▶ Accepting path exists iff $\exists w : (x, w) \in R_L$
- N is polynomially time bounded

A new co- NP characterization

Remark

• Recall: All $L \in NP$ can now be written as:

$$L = \{x \in \Sigma^* \mid \exists w \in \Sigma^* : (x, w) \in R_L\}$$

- Read this as:
 - ▶ Witness relation R_L
 - For each positive instance, there is a proof w
 - For no negative instance, there is a proof w
 - The proof is efficiently checkable
- Similar characterization for all $L' \in \text{co-NP}$:

$$L' = \{x \in \Sigma^* \mid \forall w \in \Sigma^* : (x, w) \notin R_{L'}\}$$

- Read this as:
 - Disproof relation R_{L'}
 - For each negative instance, there is a disproof w
 - For no positive instance, there is a disproof w
 - The disproof is efficiently checkable

Boolean Formulas

Definition

Let $X = \{x_1, \ldots, x_N\}$ be a set of variable names.

- Define boolean formulas BOOL inductively:
 - ► $\forall i : x_i \in \mathsf{BOOL}.$
 - ▶ $\varphi_1, \varphi_2 \in \mathsf{BOOL} \implies (\varphi_1 \land \varphi_2), (\neg \varphi_1) \in \mathsf{BOOL} \ (\textit{conjunction and negation})$

• A truth assignment for the variables in X is a word $\alpha_1 \dots \alpha_N \in \{0,1\}^N$.

• The value $\varphi(\alpha)$ of φ under α is defined inductively:

$$\frac{\varphi: x_i \quad \neg \psi \quad \psi_1 \wedge \psi_2}{\varphi(\alpha): \alpha_i \quad 1 - \psi(\alpha) \quad \psi_1(\alpha) \cdot \psi_2(\alpha)}$$

Shorthand notations:

$$\begin{array}{l} \varphi_1 \lor \varphi_2 \text{ (disjunction) for } \neg(\neg \varphi_1 \land \neg \varphi_2), \\ \varphi_1 \to \varphi_2 \text{ (implication) for } \neg \varphi_1 \lor \varphi_2 \\ \varphi_1 \leftrightarrow \varphi_2 \text{ (equivalence) for } (\varphi_1 \to \varphi_2) \land (\varphi_2 \to \varphi_1) \end{array}$$

 α

Example: XOR Function

Example

• Consider the *exclusive* or XOR with *m* arguments:

$$\mathsf{XOR}(z_1,\ldots,z_m) := \bigvee_{i=1}^m z_i \wedge \bigwedge_{1 \leq i < j \leq m} \neg (z_i \wedge z_j)$$

• XOR $(z_1, \ldots, z_m) = 1 \iff z_j = 1$ for exactly one j

• Can also be used as shorthand notation.

76 / 148

Example for NP: The Satisfiability Problem

Example

• Consider
$$\psi_1 = (x_1 \vee \neg x_2) \wedge x_3$$
 and $\psi_2 = (x_1 \wedge \neg x_1)$:

$$\psi_1(lpha)=1$$
 for $lpha=$ 011

- $\psi_2(lpha) = 0$ for all lpha
- $\varphi \in \mathsf{BOOL}$ is called *satisfiable*, if $\exists \alpha : \varphi(\alpha) = 1$
- $\bullet\,$ Can encode boolean formula into words over fixed alphabet Σ
- Language of all satisfiable formulas, the *satisfiability problem*:

 $\mathsf{SAT} := \{ \langle \varphi \rangle \mid \varphi \in \mathsf{BOOL} \text{ is satisfiable} \}$

- Obviously, SAT \in NP:
 - Witness for positive instance $\langle \varphi \rangle$ is α with $\varphi(\alpha) = 1$
 - Size of witness: linearly bounded in $|\langle \varphi \rangle|$
 - Validity check efficient
- Unknown, whether $SAT \in P!$

Bounded Reductions

- Comparing P and NP by directly comparing problems
- Assume $A, B \in \mathsf{NP}$ and $C \in \mathsf{P}$
 - How do A and B relate?
 - ▶ Is C "easier" than A and B?
 - Maybe we just didn't find good algorithms for A or B?
- Recall: *Reductions*
 - Given problems A and B
 - Solve A by reducing it to B and solving B
 - Tool for that: Reduction function f
 - Consequence: A is "easier" than B
- Used many-one reductions in unbounded setting
- Now: *Bounded setting*, so *f* should be also bounded!
 - Introduce "Cook reductions"

Polynomial Reduction (Cook Reduction)

Definition

 $A \subseteq \Sigma^*$ is polynomially reducible to $B \subseteq \Sigma^*$ (written $A \leq_m^p B$), if there $f \in FP$, such that

$$\forall w \in \Sigma^* : w \in A \iff f(w) \in B$$

Lemma

For all A, B and C the following hold:(Closedness of P under \leq_m^p)A $\leq_m^p B \land B \in P \Longrightarrow A \in P$ (Closedness of P under \leq_m^p)A $\leq_m^p B \land B \in NP \Longrightarrow A \in NP$ (Closedness of NP under \leq_m^p)A $\leq_m^p B \land B \leq_m^p C \Longrightarrow A \leq_m^p C$ (Transitivity of \leq_m^p)A $\leq_m^p B \iff \overline{A} \leq_m^p \overline{B}$

Hardness, Completeness

- Can *compare* problems now
- Introduce now "hard" problems for a class \mathcal{C} :
 - Can solve whole \mathcal{C} if just one of them
 - \blacktriangleright Are more difficult then everything in ${\cal C}$

Definition

- A is called *C*-hard, if: $\forall L \in C : L \leq_m^p A$
- If A is C-hard and $A \in C$, then A is called C-complete
- NPC is the class of all NP-complete languages
- NPC: "Most difficult" problems in NP
- Solve one of them, solve whole NP
- Solve one of them efficiently, solve whole NP efficiently

Hardness, Completeness: Properties

Lemma

- A is C-complete if and only if \overline{A} is co-C-complete.

Proof (First part).

- Let A be \mathcal{C} -complete, and $L \in \operatorname{co-} \mathcal{C}$
- Want to show: $L \leq_m^p \overline{A}$
- Indeed: $L \in \text{co-}\mathcal{C} \iff \overline{L} \in \mathcal{C} \implies \overline{L} \leq_m^p A \iff L \leq_m^p \overline{A}$
- Other direction similar (symmetry)

Hardness, Completeness: Properties (Cont.)

Lemma

- A is C-complete if and only if \overline{A} is co-C-complete.

Proof (Second part).

- Assume $A \in P \cap NPC$ and let $L \in NP$
- Want to show: $L \in P$ (since then P = NP)
- $L \in \mathsf{NP} \implies L \leq_m^p A \text{ since } A \in \mathsf{NPC}$
- $L \leq_m^p A \implies L \in \mathsf{P}$ since $A \in \mathsf{P}$

Hardness, Completeness: Properties (Cont. 2)

Lemma

- **1** A is C-complete if and only if \overline{A} is co-C-complete.

Proof (Third part).

- Assume $A \in NPC$, $B \in NP$, $A \leq_m^p B$ and $L \in NP$
- Want to show: $L \leq_m^p B$ (since then, B is NP-complete)
- $L \in \mathsf{NP} \implies L \leq_m^p A$ since $A \in \mathsf{NPC}$
- $L \leq_m^p A \implies L \leq_m^p B$ since $A \leq_m^p B$ (transitivity!)

A first NP-complete Problem

• Do NP-complete problems actually exist? Indeed:

Lemma

The following language is NP-complete:

NPCOMP := {($\langle M \rangle, x, 1^n$) | *M* is NTM and accepts x after $\leq n$ steps}

("NTM" means "non-deterministic Turing machine".)

• How to prove a problem A is NP-complete? 2 parts:

1. Membership: Show $A \in NP$

(Directly or via $A \leq_m^p B$ for a $B \in NP$)

2. Hardness: Show $L \leq_m^p A$ for all $L \in NP$ (Directly or via $C \leq_m^p A$ for a C which is NP-hard)

A first NP-complete Problem (Cont.)

Lemma

The following language is NP-complete:

NPCOMP := {($\langle M \rangle, x, 1^n$) | M is NTM and accepts x after $\leq n$ steps}

Proof (First part).

- Want to show: $\mathsf{NPCOMP} \in \mathsf{NP}$
- Given $(\langle M \rangle, x, 1^n)$
- If M accepts x in $\leq n$ steps, then at most n non-deterministic choices
- For each x, these choices are witness w!
 - Exactly the positive instances x have one w
 - |w| is bounded by n
 - Efficient check by simulating that path
- All (x, w) are witness relation R_L , so NPCOMP \in NP

A first NP-complete Problem (Cont. 2)

Lemma

The following language is NP-complete:

NPCOMP := {($\langle M \rangle, x, 1^n$) | M is NTM and accepts x after $\leq n$ steps}

Proof (Second part).

- Want to show now: NPCOMP is NP-hard
- Let $L \in NP$, decided by M_L , bound p(n)
- Show $L \leq_m^p$ NPCOMP with reduction function:

$$f: x \mapsto (\langle M_L \rangle, x, 1^{p(|x|)})$$

- ► $f \in \mathsf{FP}$
- ▶ If $x \in L$, then M_L accepts x within p(|x|) steps
- If $x \notin L$, then M_L never accepts x
- Thus: $x \in L \iff f(x) \in \mathsf{NPCOMP}$

NP-completeness of SAT

- Know now: There is an NP-complete set
- Practical relevance?
- Are there "natural" NP-complete problems?
- Recall the satisfiability problem:

 $\mathsf{SAT} := \{ \langle \varphi \rangle \mid \varphi \in \mathsf{BOOL} \text{ is satisfiable} \}$

- We saw that $SAT \in NP$:
 - A satisfying truth assignment α is witness
- Even more, it's one of the most difficult NP-problems:

Theorem (Cook, Levin)

SAT is NP-complete.

NP-completeness of SAT: Proof ideas

- We will show NPCOMP \leq_m^p SAT
- Need reduction function $f \in FP$ such that:
 - ▶ Input $(\langle M \rangle, x, 1^n)$: Machine *M*, word *x*, runtime bound *n*
 - Output ψ : Boolean formula such that

 $(\langle M \rangle, x, 1^n) \in \mathsf{NPCOMP} \iff \psi \in \mathsf{SAT}.$

- Assume *M* has just one tape
- If M accepts x, then within n steps
- Only 2n + 1 tape positions reached!
- Central idea:
 - Imagine a configuration as a line, $\mathcal{O}(n)$ symbols
 - Whole computation as a matrix with n lines
 - $\blacktriangleright\,$ Encode matrix into formula ψ
 - ψ satisfiable iff computation reaches q_{yes}
 - Formula size = Matrix size = $O(n^2)$

NP-completeness of SAT: Proof ideas (Cont.)

- Note: *M* is *non-deterministic*
 - Different computations possible for each x
 - Different paths in computation tree
- Matrix represents one path to q_{yes}
- If $x \in L(M)$ then there is at least one path to q_{yes}
 - Each path described by one matrix
 - Thus, at least one matrix!
- If $x \notin L(M)$ then there *no path* to q_{yes}
 - Thus, there is no matrix!
- Formula ψ describes a matrix which
 - Represents a computation path
 - Of length at most n
 - ► To q_{yes}

• Thus: ψ satisfiable iff accepting computation path exists!

NP-completeness of SAT: Proof details

- Describe now the formula ψ
- Given is M, states $Q = \{q_0, \ldots, q_k\}$, tape alphabet $\Gamma = \{a_1, \ldots, a_l\}$
- Final state $q_{yes} \in Q$
- Used boolean variables:
 - Q_{t,q} for all t ∈ [0, n] and q ∈ Q.

 Interpretation: After step t, the machine is in state q.
 - *H*_{t,i} for all t ∈ [0, n] and i ∈ [-n, n].
 Interpretation: After step t, the tape head is at position i.
 - T_{t,i,a} for all t ∈ [0, n], i ∈ [-n, n] and a ∈ Γ. Interpretation: After step t, the tape contains symbol a at position i.
- Number of variables: $\mathcal{O}(n^2)$
- Structure of ψ :

$$\psi := \mathit{Conf} \land \mathit{Start} \land \mathit{Step} \land \mathit{End}$$

$\psi := Conf \land Start \land Step \land End$

- Part *Conf* of ψ :
 - ► Ensures: Satisfying truth assignments describe valid computations
- Again, 3 parts:

$$Conf := Conf_Q \wedge Conf_H \wedge Conf_T$$

$$Conf_Q := \bigwedge_{t=0}^n XOR(Q_{t,q_0}, \dots, Q_{t,q_k})$$

$$Conf_H := \bigwedge_{t=0}^n XOR(H_{t,-n}, \dots, H_{t,n})$$

$$Conf_T := \bigwedge_{t=0}^n \bigwedge_{i=-n}^n XOR(T_{t,i,a_1}, \dots, T_{t,i,a_l})$$

$\psi := Conf \land \mathsf{Start} \land \mathsf{Step} \land \mathsf{End}$

- Part *Start* of ψ :
 - Ensures: At t = 0, machine is in start configuration
- One single formula:

$$Start := Q_{0,q_0} \land H_{0,0} \land \bigwedge_{i=-n}^{-1} T_{0,i,\square} \land \bigwedge_{i=0}^{|x|-1} T_{0,i,x_{i+1}} \land \bigwedge_{i=|x|}^{n} T_{0,i,\square}$$

$\psi := Conf \wedge Start \wedge Step \wedge End$

- Part Step of ψ :
 - ▶ Ensures: At each step, machine executes a legal action
 - Only one tape field changed; head moves by one position
 - Consistency with δ

$$\begin{split} Step &:= Step_1 \land Step_2\\ Step_1 &:= \bigwedge_{t=0}^{n-1} \bigwedge_{i=-n}^n \bigwedge_{a \in \Gamma} \left(\left(\neg H_{t,i} \land T_{t,i,a} \right) \to T_{t+1,i,a} \right) \\ Step_2 &:= \bigwedge_{t=0}^{n-1} \bigwedge_{i=-n}^n \bigwedge_{a \in \Gamma} \bigwedge_{p \in Q} \left(\left(Q_{t,p} \land H_{t,i} \land T_{t,i,a} \right) \\ & \to \bigvee_{(q,b,D) \in \delta(p,a)} \left(Q_{t+1,q} \land H_{t+1,i+D} \land T_{t+1,i,b} \right) \right) \end{split}$$

$\psi := Conf \wedge Start \wedge Step \wedge End$

- Part *End* of ψ :
 - ► Ensures: Eventually, machine reaches an accepting configuration
- One single formula:

$$\mathit{End}:=\bigvee_{t=0}^n Q_{t,q_{yes}}$$

- Completes proof:
 - ▶ By construction, $\psi \in \mathsf{SAT} \iff (\langle M \rangle, x, 1^n) \in \mathsf{NPCOMP}$
 - Construction is efficient

co-NP-completeness of UNSAT

Remark

- SAT is NP-complete
- Consider its complement:

UNSAT := { $\langle \varphi \rangle \mid \varphi \in \text{BOOL} \text{ is } not \text{ satisfiable}$ } = $\overline{\text{SAT}}$

- Clearly, UNSAT \in co- NP:
 - Disproof for $\langle \varphi \rangle$ is α with $\varphi(\alpha) = 1$
 - Can be checked efficiently, like for SAT
 - Follows from SAT \in NP anyway
- SAT is NP-complete \iff UNSAT is co-NP-complete

• Will now study some more NP-complete problems!

CIRSAT: Satisfiability of Boolean Circuits

Definition (Boolean Circuit)

Let $X = \{x_1, \ldots, x_N\}$ be a set of variable names.

• A boolean circuit over X is a sequence $c = (g_1, \ldots, g_m)$ of gates:

$$g_i \in \{\perp, \top, x_1, \ldots, x_N, (\neg, j), (\wedge, j, k)\}_{1 \leq j, k < i}$$

• Each g_i represents a boolean function $f_c^{(i)}$ with N inputs $\alpha \in \{0, 1\}^N$:

$g_i(lpha)$:	\perp	Т	xi	(\neg, j)	(\wedge, j, k)
$f_c^{(i)}(\alpha)$:	0	1	α_i	$1-f_c^{(j)}(\alpha)$	$f_c^{(j)}(\alpha) \cdot f_c^{(k)}(a)$

- Use $a \lor b$ as shorthand for $\neg(\neg a \land \neg b)$
- Whole circuit c represents boolean function $f_c(\alpha) := f_c^{(m)}(\alpha)$.
- c is satisfiable if $\exists \alpha \in \{0,1\}^N$ such that $f_c(\alpha) = 1$.

CIRSAT: Satisfiability of Boolean Circuits (Cont.)

- Practical question: "Is circuit ever 1?"
 - Find unused parts of circuits (like dead code)
- Formally:
 - (Assume again some fixed encoding $\langle c \rangle$ of circuit c)

Definition

The circuit satisfiability problem is defined as:

 $\mathsf{CIRSAT} := \{ \langle c \rangle \mid c \text{ is a satisfiable circuit} \}$

CIRSAT: Satisfiability of Boolean Circuits (Cont. 2)

Lemma

CIRSAT is NP-complete.

Proof.

- CIRSAT \in NP: Satisfying input is witness w
 - Size N for N variables
 - Verifying: Evaluating all gates is efficient
- SAT \leq_m^p CIRSAT: Transform formula φ to circuit c
- Remark: Transformation circuit to equivalent formula not efficient
 - Circuit can "reuse" intermediate results
 - CIRSAT \leq_m^p SAT anyway (SAT is NP-complete!)
 - Transformation produces satisfiability equivalent formula

CNF: Restricted Structure of Boolean Formulas

Definition (CNF)

Let $X = \{x_1, \ldots, x_N\}$ be a set of variable names.

- A literal I is either x_i (variable) or $\neg x_i$ (negated variable, also $\overline{x_i}$)
- A *clause* is a disjunction $C = I_1 \vee \ldots \vee I_k$ of literals
- A boolean formula in *conjunctive normal form* (CNF) is a conjunction of clauses φ = C₁ ∧ ... ∧ C_m
- Set of all CNF formulas:

$$\mathsf{CNFBOOL} := \left\{ \bigwedge_{i=1}^{m} \bigvee_{j=1}^{k(i)} \sigma_{i,j} \mid \sigma_{i,j} \text{ are literals} \right\}$$

• CNF formulas where the clauses contain only k literals: k-CNF

$$k\operatorname{-SAT} := \{ \langle \varphi \rangle \mid \varphi \in k\operatorname{-CNFBOOL} \text{ is satisfiable} \}$$

k-SAT: NP-complete for $k \ge 3$

Lemma

- $\textcircled{0} 1-SAT, 2-SAT \in \mathsf{P}$
- 3-SAT is NP-complete.

Proof (Overview).

- First part: Exercise
- Second part:
 - → 3-SAT \in NP clear: 3-SAT \leq_m^p SAT (special case)
 - Then show CIRSAT \leq_m^p 3-SAT
 - Figure a circuit $c = (g_1, \dots, g_m)$, construct a 3-CNF formula ψ_c
 - Variables in formula: One for each input and each gate
 - x_1, \ldots, x_N for inputs of circuit
 - y_1, \ldots, y_m for gates
 - Clauses (size 3) enforce values of gates

NP-completeness of 3-SAT

Lemma

2 3-SAT is NP-complete.

Proof (Details).

Gate g _i	Clause	Semantics
\perp	$\{\overline{y_i}\}$	$y_i = 0$
Т	$\{y_i\}$	$y_i = 1$
Xj	$\{\overline{y_i}, x_j\}, \{\overline{x_j}, y_i\}$	$y_i \leftrightarrow x_j$
(\neg, j)	$\{\overline{y_i},\overline{y_j}\},\{y_i,y_j\}$	$y_i \leftrightarrow \overline{y_j}$
(\wedge, j, k)	$\{\overline{y_i}, y_j\}, \{\overline{y_i}, y_k\}, \{\overline{y_j}, \overline{y_k}, y_i\}$	$y_i \leftrightarrow (y_j \wedge y_k)$

- Finally, add $\{y_m\}$
- All clauses together form $\psi_{\textit{c}}$

NP-completeness of 3-SAT (Cont.)

Lemma

2 3-SAT is NP-complete.

Proof (Details, Cont.).

- If c is satisfiable, then also ψ_c :
 - Use assignment α of c for x_1, \ldots, x_N
 - Value $f_c^{(j)}(\alpha)$ at gate g_j as value for y_j
 - By construction, all clauses true, thus ψ_c satisfied
- If c not satisfiable, then neither ψ_c :

$$f_c(\alpha) = 0$$
 for all α

- Thus, $f_c^{(m)}(lpha)$ always 0 ("top level gate")
- If all clauses satisfied, $y_m = f_c^{(m)}(lpha)$, but then $\{y_m\}$ not satisfied
- Thus, $c \in \mathsf{CIRSAT} \iff \psi_c \in \operatorname{3-SAT}$

Graph problems

• So far: Satisfiability problems

- For boolean formulas (SAT, 3-SAT)
- For boolean circuits (CIRSAT)
- Now: Graph problems
 - Undirected graph: G = (V, E)
 - V are the nodes
 - $E \subseteq \binom{V}{2}$ are the *edges*
 - Efficient encoding possible (adjacency matrix or list)
- Problems consider different properties of graphs

Independent Set Problem

- First problem: Independent set problem
 - Given: Undirected graph G = (V, E) and number k
 - Question: Is there $I \subseteq V$ such that
 - **1** ||I|| = k, and
 - 2 No two nodes in I are connected?
- Formally:

Definition

The *independent set problem* is defined as:

$$\mathsf{INDEPSET} := \left\{ (G,k) \mid \exists I \subseteq V(G) : \|I\| = k \land \binom{I}{2} \cap E(G) = \emptyset \right\}$$

• Turns out: Very difficult (i.e. NP-complete)

INDEPSET is NP-complete

Lemma

INDEPSET is NP-complete.

Proof (Sketch).

- INDEPSET \in NP: Set I is the witness
- NP-completeness via 3-SAT \leq_m^p INDEPSET:
 - Given φ with k clauses, construct G
 - Each literal is a node
 - Connect literals from same clause (triangles)
 - Connect complementary literals
- If φ satisfiable:

Choose one satisfied literal in each clause for I

• If G has k-independent set:

Represents a satisfying truth assignment

105 / 148

CLIQUE is NP-complete

• Clique problem

- Given: Undirected graph G = (V, E) and number k
- Question: Is there $C \subseteq V$ such that
 - $\|C\| = k?$
 - All nodes in C are pairwise connected (a "k-clique")
- Formally:

Definition (Clique Problem)

The *clique problem* is defined as:

$$\mathsf{CLIQUE} := \left\{ (G,k) \mid \exists C \subseteq V(G) : \|C\| = k \land \binom{C}{2} \subseteq E \right\}$$

• NP-complete! (See exercises)

NODECOVER is NP-complete

• Node cover problem

- Given: Undirected graph G = (V, E) and number k
- Question: Is there $N \subseteq V$ such that

• Formally:

Definition (Node Cover Problem)

The node cover problem is defined as:

 $\mathsf{NODECOVER} := \{ (G, k) \mid \exists N \subseteq V(G) : \|N\| = k \land \forall e \in E(G) : e \cap N \neq \emptyset \}$

N

• NP-complete! (See exercises)

HAMILTONPATH is NP-complete

• Hamilton path problem

- Given: Undirected graph G = (V, E)
- Question: Is there a path $p = (p_0, \ldots, p_k)$ in G such that:
 - All nodes p_i are pairwise different? ("Hamilton path")
- Formally:

Definition (Hamilton Path Problem)

The Hamilton Path Problem is defined as:

HAMILTONPATH := { $G \mid \exists p : p \text{ is Hamilton path in } G$ }

• NP-complete!
HITTINGSET is NP-complete

• Hitting set problem

- Given:
 - ★ A set A
 - ★ A collection $C = (C_1, \ldots, C_m)$ of subsets of A: $\forall i : C_i \subseteq A$
 - ★ A number k
- Question: Is there a set $H \subseteq A$ such that:
 - $\bigcirc ||H|| = k$
 - 2 *H* contains an element from each $C_i \in C$ ("*k*-hitting set")
- Not a graph problem, but related
- Formally:

Definition (Hitting Set Problem)

The *hitting set problem* is defined as:

 $\mathsf{HITTINGSET} := \{ (A, C, k) \mid \exists H \subseteq A : \|H\| = k \land \forall C_i \in C : H \cap C_i \neq \emptyset \}$

• NP-complete! (See exercises)

TSP is NP-complete

- Travelling Salesman Problem
 - Given:
 - ★ *n* cities with a distance matrix $D \in \mathbb{N}^{n \times n}$
 - ★ A number k
 - Question: Is there a tour through all cities such that
 - Each city is visited exactly once, and
 - 2 The distance sum of the tour is at most k?
- Formally:

Definition (Travelling Salesman Problem)

The Travelling salesman problem is defined as:

$$\mathsf{TSP} := \left\{ (D,k) \mid \exists \pi : \sum_{i=1}^n D[\pi(i),\pi(i+1)] \le k \right\}$$

• NP-complete!

KNAPSACK is NP-complete

• Knapsack Problem

- Given:
 - ★ *n* items with values $V = (v_1, ..., v_n)$ and weights $W = (w_1, ..., w_n)$
 - ★ A lower value limit / and an upper weight limit m
- Question: Is there a selection $S \subseteq [1, n]$ of the items, such that
 - The sum of the values is at least *I*, and
 - 2 The sum of the weights is at most m?

• Formally:

Definition (Knapsack problem)

The Knapsack problem is defined as:

$$\mathsf{KNAPSACK} := \left\{ (V, W, I, m) \mid \exists S \subseteq [1, n] : \sum_{i \in S} w_i \le I \land \sum_{i \in S} v_i \ge m \right\}$$

• NP-complete!

ILP is NP-complete

• Integer linear programming problem

- ▶ Given: *n* linear inequalities in *n* variables with integer coefficients
- Question: Is there an integer solution to that system?
- Formally:

Definition (Integer Linear Programming)

The Integer linear programming problem is defined as:

 $\mathsf{ILP} := \{ (A, b) \mid \exists x \in \mathbb{Z}^n : Ax \le b \}$

• NP-complete!

• Remark: Linear programming (allowing rationals) is in P!

BINPACK is NP-complete

- Bin packing problem
 - Given:
 - * *n* items with sizes $A = (a_1, \ldots, a_n)$
 - ★ b bins with capacity c each
 - Question: Is it possible to pack the items into the bins?
- Formally:

Definition (Bin Packing)

The bin packing problem is defined as:

$$\mathsf{BINPACK} := \left\{ (A, b, c) \mid \exists \text{ partition } S_1, \dots, S_b \text{ of } [1, n] \text{ s.t. } \forall i : \sum_{j \in S_i} a_j \leq c \right\}$$

• NP-complete!

Between P and NPC

- Many problems are NP-complete
- Many problems are in P
- Assume $P \neq NP$:
 - Are all problems either P or NP-complete?
 - ► No!

Lemma

```
If P \neq NP, then there is a language L \in NP - (P \cup NPC).
```

(Without proof.)

- "Too easy" for NPC, "too difficult" for P
- Will see a candidate later

Pseudo-polynomial complexity

- Precise problem formulation may make a difference
 - Example: Integer linear programming
 - In P without restriction to integers
- Representation of problem instances may also matter:
 - KNAPSACK is NP-complete
 - But: Given n items and weight limit l, solve it in time $O(n \cdot l)$
 - Still not polynomial in input: Input size is O(n · log(l))
 - I is represented binary (or other k-ary)
- If polynomial in input values (not size/length): Pseudo-polynomial
- Strong NP-completeness:
 - NP-complete even if input values polynomially in input size
 - Equivalent: Input values are given in unary
 - Examples: All we saw except KNAPSACK
 - Don't have pseudo-polynomial algorithms (unless P = NP)

Unknown Relations

- NP- and co- NP-complete problems: Regarded as "difficult"
- How do they relate to each other?
 - ► Unknown: NP [?] = co- NP
 - ▶ NP \neq co- NP \implies P \neq co- NP, thus NP \neq co- NP stronger
 - Intuition: Efficiently verifiable proofs, no efficiently verifiable disproofs
- What about $NP \cap co-NP?$
 - Unknown: $P \stackrel{?}{\subsetneq} NP \cap co-NP$
 - Intuition: Efficiently verifiable proofs and disproofs, not efficiently provable
- "Upper end": Also NP $\stackrel{?}{\subsetneq}$ PSPACE unknown
 - Intuition: Provable in polynomial space, but no (time-)efficiently verifiable proofs
 - Even $P \subsetneq PSPACE$ unknown

The Problems PRIMES and GI

• $\mathsf{P} \neq \mathsf{NP}$ not known, thus no language proven in $\mathsf{NP} - (\mathsf{P} \cup \mathsf{NPC})$

• Former candidate: PRIMES

- Deciding primality of a number
- Efficient probabilistic methods were known
- Shown in 2002: $PRIMES \in P$
- Another candidate: GI (graph isomorphism)
 - Given: Two graphs G_1 and G_2
 - Question: Are they isomorphic?

 $\mathsf{GI} := \{ (\mathsf{G}_1, \mathsf{G}_2) \mid \exists \pi : (e \in \mathsf{E}(\mathsf{G}_1) \iff \pi(e) \in \mathsf{E}(\mathsf{G}_2)) \}$

- Isomorphism: Graphs "look the same" (same structure)
- High practical relevance
- Many approximations, but no exact complexity known
- Own complexity class GI: Everything reducible to GI

Course Outline

- Introduction
 - Basic Computability Theory
 - Formal Languages
 - Model of Computation: Turing Machines
 - Decidability, Undecidability, Semi-Decidability

Complexity Classes

- Landau Symbols: The $\mathcal{O}(\cdot)$ Notation
- Time and Space Complexity
- Relations between Complexity Classes
- Feasible Computations: P vs. NP
 - Proving vs. Verifying
 - Reductions, Hardness, Completeness
 - Natural NP-complete problems
 - Advanced Complexity Concepts
 - Non-uniform Complexity
 - Probabilistic Complexity Classes
 - Interactive Proof Systems

Course Outline

- Introduction
- Basic Computability Theory
 - Formal Languages
 - Model of Computation: Turing Machines
 - Decidability, Undecidability, Semi-Decidability

Complexity Classes

- Landau Symbols: The $\mathcal{O}(\cdot)$ Notation
- Time and Space Complexity
- Relations between Complexity Classes
- 3 Feasible Computations: P vs. NP
 - Proving vs. Verifying
 - Reductions, Hardness, Completeness
 - Natural NP-complete problems
 - Advanced Complexity Concepts
 - Non-uniform Complexity
 - Probabilistic Complexity Classes
 - Interactive Proof Systems

Uniform vs. Non-uniform Models

- Turing Machine: One fixed (finite) machine for all input sizes
- "One size fits it all" approach, uniform model
- Some situations: More hardwired information when size grows
 - Cryptography: Precomputed tables for different key sizes
 - Want to model such attackers
- Model this *non-uniform* notion using *advice*:
 - Machine gets advice string a_n in addition to input
 - One fixed string a_n for each input size n

Turing Machine with Advice

Definition (Turing Machine with Advice)

- A Turing machine with advice is a 6-tuple M = (Q, Γ, δ, q₀, F, A) with Q, Γ, δ, q₀, F as before and A = {a_n}_{n≥0}
- The set a A is called the *advice*.
- Language accepted by *M*:

 $L(M) := \{x \in \Sigma^* \mid \exists y, z \in \Gamma^* : (\varepsilon, q_0, x \# a_{|x|}) \vdash^* (y, q_{yes}, z)$

(Separation symbol $\# \in \Gamma$)

Turing Machine with Advice: Remarks

- Classical Turing machine: Finite object
- Advice: Infinite object, external information to machine
- Difference to witness from NP:
 - Witness was different for each input, a specific proof
 - Only for the positive instances $x \in L(M)$
 - Advice is for each input size, a static computational "aid"
 - ▶ Fixed, the same *a_n* for each *x* of length *n*
- Very powerful without restrictions:
 - Any language L (even undecidable!) could be decided
 - Encode into a_n a large table with all words Σ^n
 - For each word x a bit: $x \in L$ or $x \notin L$
 - Machine can look up in table

Restricting the Advice: P/poly

• Restrict now advice polynomially

Definition

P/poly is the set of all languages L such that:

- L is decided by a TM M with advice A exists, and
- 2 $\forall n : |a_n| \le p(n)$ for some polynomial p(n).
 - Clear: $P \subseteq P/poly$ (just ignore the advice)
 - Thus: If $\exists L \in NP$ with $L \notin P$ /poly then $P \neq NP$!
 - Difficulty: P/poly is powerful, contains still undecidable languages

P/poly and Undecidability

Lemma

P/poly contains undecidable problems.

Proof.

First: There are unary undecidable languages
Encode *H* using one-symbol alphabet
Second: All unary languages are in P/poly
For each size *n*, there is only one instance *x_n*Set *a_n* = 1 if it is positive (*x_n* ∈ *L*)
Set *a_n* = 0 if it is negative (*x_n* ∉ *L*)

• However, under reasonable assumptions: $NP - P/poly = \emptyset$

Circuit Characterization of Non-uniformity

- Defined P/poly using advice
- Alternative: Use circuits
- Recall: Circuit C_n
 - Gets input string $\alpha \in \{0,1\}^n$, and
 - Produces output bit $f_c(\alpha)$
 - Defines an accepted language:

$$L(C_n) := \{ \alpha \in \{0,1\}^n \mid f_{C_n}(\alpha) = 1 \}$$

- Works only with fixed instance size
 - ► Thus extend to *circuit family* $C = \{C_n\}_{n \ge 0}$: $L(C) := \{\alpha \in L(C_{|\alpha|})\}$
- Non-uniformity: New device for each input size

Circuit Size

- Circuit family may have a non-finite representation (like advice)
- Very powerful without restrictions (like advice)
- Resource bound: size(C_n)
 - Defined via number of gates
 - Creates language class:

 $\mathsf{DSIZE}(s(n)) := \{L(C) \mid \forall n \ge 0 : \mathsf{size}(C_n) \le s(n)\}$

• TM can be simulated with quadratic circuit size:

Lemma

```
\mathsf{DTIME}(t(n)) \subseteq \mathsf{DSIZE}(\mathcal{O}(t(n)^2))
```

(Without proof.)

Circuit Characterization of P/poly

Lemma

 $P/poly = DSIZE(n^{O(1)})$

Proof.

- First: Let $L \in P/poly$ by a TM M with advice A
 - For each *n*, construct circuit C_n simulating *M* on Σ^n
 - a_n is only polynomially big, can be hardwired

Thus: $L \in \mathsf{DSIZE}(n^{O(1)})$

- Second: Let $L \in \mathsf{DSIZE}(n^{O(1)})$ via circuit family C
 - Use a TM for evaluating circuits
 - Advice A is the (encoded) circuit family C
 - Thus: $L \in P/poly$

Probabilistic Computation

- Models so far: Had exactly one outcome
 - Classical deterministic Turing machine
 - Non-determinism with witness characterization
 - Circuits
- Relax this requirement: Introduce "coin-tosses"
 - At each step, machine can choose different next steps
 - Does so with a certain *probability*
 - Introduces uncertainty: Same input, different answers
- Produces still useful results if low error probability
 - Cryptography: Attacker may be happy to succeed 1% of the time
- Produces still useful results if *low error probability*
- Syntactically the same as non-deterministic machine, but:
 - ▶ Non-deterministic model: *Theoretic* model, implicit "∃" quantification
 - Randomized model: Practical model, may be executed directly

Notation

• For
$$L \subseteq \Sigma^*$$
 let $\chi_L : \Sigma^* \to \{0, 1\}$:
 $\chi_L(x) := \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}$

 χ_L is the characteristic function of L

- Assume from now on:
 - ► *M* outputs 1 for "accept"
 - M outputs 0 for "reject"
 - Thus, only q_{halt} instead of q_{yes} and q_{no}
- Allows expressions like " $M(x) = \chi_L(x)$ "
- "Coin tosses" $r \in \{0,1\}^*$ as a second argument: M(x,r)
 - Notation of probability: $\operatorname{Prob}_r[M(x, r) = 1]$
 - If M probabilistic, then r implicit: Prob[M(x) = 1]

One-sided Error: The class RP

- Didn't define accepted languages yet
- First type: One-sided error
 - Positive instances may be judged wrong (output 0 or 1)
 - Negative instances are always correct (output 0)

Definition

RP is the class of all L for which a polynomially time-bounded, probabilistic TM M exists, such that:

$$x \in L \implies \operatorname{Prob}[M(x) = 1] \ge 1/2$$

 $x \notin L \implies \operatorname{Prob}[M(x) = 1] = 0$

• Symmetric behaviour: co- RP (always correct for $x \in L$)

P and NP vs. RP

- Clear: $P \subseteq RP$ (Machine is always correct, no coin tosses)
- $\mathsf{RP} \subseteq \mathsf{NP}$:
 - RP: For $x \in L$, at least half the paths lead to 1
 - NP: For $x \in L$, at least one path leads to 1
 - ▶ Both produce 0 for all runs on $x \notin L$
- Or, using the witness-based characterization of NP:

	NP	RP
$x \in L:$ $x \notin L:$	$\exists w : (x, w) \in R_L \\ \forall w : (x, w) \notin R_L$	$\frac{Prob_r[(x,r) \in R_L] \ge 1/2}{\forall r : (x,r) \notin R_L}$

Error Bound Robustness

- Positive instances: Error probability 1/2
- Assume: Error probability 2/3
- Can be *reduced* to 1/2:
 - Run the machine twice
 - Accept, if one of the runs accepted
 - For $x \notin L$: Still never acceptance
 - For $x \in L$: Error probability $(2/3)^2 = 4/9 < 1/2$
- In general, using more runs:

Lemma

If there is a polynomially time-bounded probabilistic TM M for L and a polynomial p(n) such that:

$$x \in L \implies \operatorname{Prob}[M(x) = 1] \ge 1/p(|x|)$$

 $x \notin L \implies \operatorname{Prob}[M(x) = 1] = 0$

Then $L \in \mathsf{RP}$.

(Without proof.)

RP: Error Bound Robustness

- Seen: Very low acceptance ratio is "boosted" to 1/2
- Can "boost" even further, very close to 1 ("almost always"):

Lemma

For each $L \in RP$ and each polynomial p(n), there is a polynomially time-bounded probabilistic TM M such that:

$$x \in L \implies \operatorname{Prob}[M(x) = 1] \ge 1 - 2^{-p(|x|)}$$

 $x \notin L \implies \operatorname{Prob}[M(x) = 1] = 0$

(Without proof.)

• Thus, two equivalent characterizations:

Very weak (1/p(|x|) bound) for proof obligations
 Very strong (1 - 2^{-p(|x|)} bound) for proof assumptions

Two-sided Error: The class BPP

• Now allow errors for positive and negative instances

Definition

BPP is the class of all L for which a polynomially time-bounded, probabilistic TM M exists, such that:

$$\forall x \in L : \mathsf{Prob}[M(x) = \chi_L(x)] \ge 2/3$$

• Notation from before:

$$x \in L \implies \operatorname{Prob}[M(x) = 1] \ge 2/3$$

 $x \notin L \implies \operatorname{Prob}[M(x) = 1] < 1/3$

• Symmetric definition: BPP = co- BPP

• Definition is again quite robust, regarding the 2/3

BPP: Error Bound Robustness

Lemma (Weak characterization of BPP)

If there is a polynomially time-bounded probabilistic TM M for L, a polynomial p(n) and a computable function f(n) such that:

$$\begin{aligned} x \in L \implies \operatorname{Prob}[M(x) = 1] \geq f(|x|) + 1/p(|x|) \\ x \notin L \implies \operatorname{Prob}[M(x) = 1] < f(|x|) - 1/p(|x|) \end{aligned}$$

Then $L \in BPP$.

(Without proof.)

Lemma (Strong characterization of BPP)

For each $L \in BPP$ and each polynomial p(n), there is a polynomially time-bounded probabilistic TM M such that:

$$\forall x \in L : \operatorname{Prob}[M(x) = \chi_L(x)] \ge 1 - 2^{-p(|x|)}$$

(Without proof.)

Relations of BPP

- Clearly $RP \subseteq BPP$ (no error for $x \notin L$ with RP)
- Unknown relation between BPP and NP
- Note: Error rate can be made exponentially small
- "Efficient computation" nowadays often characterized with BPP
 - ▶ In fact, P = BPP is a popular conjecture

Monte Carlo vs. Las Vegas

• Described machines always answer, sometimes wrong

- Monte Carlo Algorithms
- Contrast: Always answer right, but sometimes with "I don't know"
 - Las Vegas Algorithms
- Denote "I don't know" with " \perp "

Definition

ZPP is the class of all L for which a polynomially time-bounded, probabilistic TM M exists, such that:

$$\forall x \in L : \mathsf{Prob}[M(x) = \bot] \leq 1/2$$
, and

$$\forall x \in L, r : M(x, r) \neq \bot \implies M(x, r) = \chi_L(x)$$

More Class Relationships

Lemma

- $\bullet \mathsf{P} \subseteq \mathsf{ZPP} \subseteq \mathsf{RP} \subseteq \mathsf{BPP}$
- **2PP = RP \cap co- RP**
- $I BPP \subseteq P/poly$
- BPP = P if pseudo random number generators exist. (Efficient derandomization)

(Without proof.)

• Pseudo random number generators (PRNGs) output *looks* random

- No observer can tell the difference
- No observer can predict the next bit
- PRNGs exist under certain (sophisticated) assumptions

Intuitive Notion of a Proof

- Proof: Prover and Verifier
- Prover convinces verifier of validity of some assertion
- In mathematics:
 - Prover writes down a list of steps
 - Verifier checks each step
- In general:
 - Interaction between the parties
 - Verifier asks questions (possibly adaptively)
 - Prover answers them
- Careful verifier is only convinced of valid assertions

Formalizing the Notion of a Proof

• Interpret NP as non-interactive proofs:

- Supplied witness is the proof
- Machine checking it is the verifier, working *efficiently*
- Only true assertions (" $x \in L$ ") have a proof
- "NP proof system"
- General notion with similar properties:
 - Efficiency of the verifier
 - ② Correctness requirement:
 - Completeness: Each true assertion has a convincing proof strategy Soundness: No false assertion has a convincing proof strategy
- Will use Interactive Turing Machines for that

Interactive Turing Machine (ITM)

- Like ordinary Turing machine, but with
 - Communication tape and
 - Two communication states q_? and q_!
- Operation of two *composed machines* $\langle M_1, M_2 \rangle$:
 - M_1 starts in q_0 , M_2 waits in $q_?$
 - ▶ *M*₁ runs, writes message on *shared communication* tape
 - M_1 switches to q_2 , M_2 switches to q_1
 - M₂ runs, M₁ waits
 - .. And so on, back and forth ..
 - Finally, M₂ stops
- Period between control switches: A round
- Output: Tape contents of M₂ after halting

Interactive Proof System

Definition (Interactive Proof System)

An *interactive proof system* for L is a pair $\langle P, V \rangle$ of ITMs with:

- V is probabilistic and polynomially time-bounded.
- Orrectness requirement:

Completeness: $\forall x \in L$: $Prob[\langle P, V \rangle(x) = 1] \ge 2/3$ Soundness: $\forall x \notin L : \forall P^* : Prob[\langle P^*, V \rangle(x) = 1] < 1/3$

- Correctness is probabilistic
- Bounds:
 - Verifier is bounded
 - Prover is not bounded
- Soundness is against all provers (incl. very bad ones)
- Useful model for cryptographic protocols

IP hierarchy

Definition (IP hierarchy)

Let $r : \mathbb{N} \to \mathbb{N}$.

- IP(r(n)) contains all L for with interactive proof systems ⟨P, V⟩ such that on common input x, at most r(|x|) rounds are used.
- IP contains all *L* having interactive proof systems:

$$\mathsf{IP} := \bigcup_r \mathsf{IP}(r(n))$$

Properties of IP

- Clearly NP \subseteq IP:
 - Just one round
 - Prover just writes witness
 - Verifier checks it (even deterministically)
 - Thus, interaction necessary to gain expressiveness
- Also randomness necessary:
 - Let $\langle P, V \rangle$ without random choices
 - P always knows exactly answer of V
 - Thus: Doesn't need to ask, can calculate answer itself
 - Therefore, only one final message needed
 - This is an NP proof system!
- Further: $IP = IP(n^{\mathcal{O}(1)})$
 - V can only do polynomially many steps
 - Thus: Number of rounds polynomially bounded
IP: Error Bound Robustness

• As for BPP, bounds can be minimized:

Lemma

For each $L \in IP$ and each polynomial p(n), there is an interactive proof system $\langle P, V \rangle$ with strong correctness properties: Completeness: $\forall x \in L : Prob[\langle P, V \rangle(x) = 1] \ge 1 - 2^{-p(|x|)}$ Soundness: $\forall x \notin L : \forall P^* : Prob[\langle P^*, V \rangle(x) = 1] < 2^{-p(|x|)}$ (Without proof.)

- Price for that:
 - Increased number of rounds (serial repetitions), or
 - Increased message sizes (parallel repetitions)

Example: Graph Non-Isomorphism

Theorem

 $\mathsf{GNI} := \overline{\mathsf{GI}} \in \mathsf{IP}.$

Proof (Sketch).

• Given G_1, G_2 , show they are not isomorphic

Idea:

- "Shuffle" one of them
- Only possible to find which one it was, if G_1 , G_2 not isomorphic

• Thus, protocol:

- V chooses $i \in \{1,2\}$ and permutation π
- V sends $H := \pi(G_i)$
 - *P* finds *j* such that G_j is isomorphic to *H*, sends *j*
- V checks whether i = j
- If $(G_1, G_2) \in \text{GNI}$, *P* can find correct *j* (*P* is unbounded!)
- If $(G_1, G_2) \notin \text{GNI}$, P can only guess and fails with 50% chance

IP: More properties

- Note: Protocol was just two rounds, $\mathsf{GNI} \in \mathsf{IP}(2)$
- $\mathsf{GNI} \in \mathsf{co-NP}$, not known whether in P or NP
- Indeed, IP is quite strong:

Theorem

```
(\mathsf{NP} \cup \mathsf{co-NP}) \subseteq \mathsf{IP}
```

```
2 IP = PSPACE
```

(Without proof.)

- Interesting extension: Zero knowledge proof systems
 - Verifier does not gain knowledge
 - Needs definition of "knowledge": Information that can not be efficiently computed
 - Used for secrecy properties in cryptography

Course Outline

- Introduction
 - Basic Computability Theory
 - Formal Languages
 - Model of Computation: Turing Machines
 - Decidability, Undecidability, Semi-Decidability

2 Complexity Classes

- Landau Symbols: The $\mathcal{O}(\cdot)$ Notation
- Time and Space Complexity
- Relations between Complexity Classes
- Feasible Computations: P vs. NP
 - Proving vs. Verifying
 - Reductions, Hardness, Completeness
 - Natural NP-complete problems
 - Advanced Complexity Concepts
 - Non-uniform Complexity
 - Probabilistic Complexity Classes
 - Interactive Proof Systems