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Introduction

Administrative Meta-Information

5-Day course, Monday (13.7.) to Friday (17.7.)

Schedule:

Mon (13.7.): 10:00 - 12:00, 16:30 - 18:30
Tue (14.7.): 10:00 - 12:00, 14:00 - 16:00

Wed (15.7.): 10:00 - 12:00, 14:00 - 16:00
Thu (16.7.): 10:00 - 12:00, 14:00 - 16:00

Fri (17.7.): 10:00 - 12:00, 16:30 - 18:30

Lecture notes avaiable at:

http://www.it.uu.se/katalog/marst984/cc-st09

Some small assignments at end of day

Course credits: ??

Course is interactive, so:

Any questions so far?

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 2 / 148

http://www.it.uu.se/katalog/marst984/cc-st09


Introduction

What is Computational Complexity?

Studies intrinsic complexity of computational tasks

Absolute Questions:
I How much time is needed to perform the task?
I How much resources will be needed?

Relative Questions:
I More difficult than other tasks?
I Are there “most difficult” tasks?

(Surprisingly: Many relative answers, only few absolute ones..)

Rigorous treatment:
I Mathematical formalisms, minimize “hand-waving”
I Precise definitions
I Theorems have to be proved

After all: Complexity Theory
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Introduction

What is Computational Complexity? (Cont.)

Basis: Computability Theory
I Provides models of computation
I Explores their strength (expressiveness)
I Question: “What can be computed (at all)?”

Then: Complexity Theory
I Tries to find meaningful complexity measures
I Tries to classify and relate problems
I Tries to find upper and lower complexity bounds
I Question: “What can efficiently be computed?”

One core concern:
I What does “efficiently” actually mean?

I Proving vs. Verifying (P
?
= NP problem)
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Introduction

Course Outline

0 Introduction

1 Basic Computability Theory
Formal Languages
Model of Computation: Turing Machines
Decidability, Undecidability, Semi-Decidability

2 Complexity Classes
Landau Symbols: The O(·) Notation
Time and Space Complexity
Relations between Complexity Classes

3 Feasible Computations: P vs. NP
Proving vs. Verifying
Reductions, Hardness, Completeness
Natural NP-complete problems

4 Advanced Complexity Concepts
Non-uniform Complexity
Probabilistic Complexity Classes
Interactive Proof Systems
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Basic Computability Theory Formal Languages

Problems as Formal Languages

Start with very high-level model of computation

Assume a machine with input and output

Formal notation for format:
I Σ = {σ1, . . . , σk} is a finite set of symbols
I w = (w1, . . . ,wl) is a word over Σ: ∀i : wi ∈ Σ

F Write also just w1w2 . . . wl

I l is the length of w , also denoted |w |
I ε is the empty word , i.e., |ε| = 0
I Σk is the set of words of length k
I Σ∗ =

⋃
k≥0 Σk are all words over Σ

I A language is a set L ⊆ Σ∗

I Let L1, L2 ⊆ Σ∗, language operations:
F L1 ∪ L2 (union), L1 ∩ L2 (intersection), L1 − L2 (difference)
F L := Σ∗ − L (complement)
F L1L2 := {w | ∃w1 ∈ L1, w2 ∈ L2 : w = w1w2} (concatenation)
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Basic Computability Theory Formal Languages

Problems as Formal Languages (Example)

Example: NAT

Let Σ := {0, 1, . . . , 9}
Σ∗ is all strings with digits

Let [n]10 denote decimal representation of n ∈ N
NAT := {[n]10 | n ∈ N} ( Σ∗ all representations of naturals

I 010 ∈ Σ∗ − NAT

Machine for calculating square:

Input: w = [n]10 ∈ Σ∗

Output: v ∈ Σ∗ with v = [n2]10

(Plus error-handling for w /∈ NAT)
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Basic Computability Theory Formal Languages

Problems as Formal Languages (2nd Example)

Example: PRIMES

Let Σ := {0, 1, . . . , 9} and NAT as before

PRIMES := {[p]10 | p is a prime number}
Clearly: PRIMES ( NAT

Machine M for checking primality:

Input: w = [n]10 ∈ Σ∗

Output: 1 if n is prime, 0 otherwise

This is a decision problem:
I PRIMES are the positive instances,
I Σ∗ − PRIMES (everything else) the negative instances
I M has to distinguish both (it decides PRIMES)

Important concept, will come back to that later!
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Basic Computability Theory Model of Computation: Turing Machines

Model of Computation

Input/Output format defined. What else?

Model of Computation should:
I Define what we mean with “computation”, “actions”, ...
I Be simple and easy to use
I ... but yet powerful

Models: Recursive Functions, Rewriting Systems, Turing Machines, ...

All equally powerful:

Church’s Thesis

All “solvable” problems can be solved by any of the above formalisms.

We will focus on the Turing Machine.
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Basic Computability Theory Model of Computation: Turing Machines

Turing Machine

Turing Machines are like simplified computers containing:
I A tape to read/write on

F Contains squares with one symbol each
F Is used for input, output and temporary storage
F Unbounded

I A read/write head
F Can change the symbol on the tape at current position
F Moves step by step in either direction

I A finite state machine
F Including an initial state and final states

Looks simple, but is very powerful

Standard model for the rest of the course
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Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Definition

Definition (Turing Machine)

A Turing machine M is a five-tuple M = (Q, Γ, δ, q0,F ) where

Q is a finite set of states;
Γ is the tape alphabet including the blank: 2 ∈ Γ;

q0 is the initial state, q0 ∈ Q;
F is the set of final states, F ⊆ Q;
δ is the transition function, δ : (Q − F )× Γ→ Q × Γ× {R,N, L}.

Operation:

Start in state q0, input w is on tape, head over its first symbol
Each step:

I Read current state q and symbol a at current position
I Lookup δ(q, a) = (p, b,D)
I Change to state p, write b, move according to D

Stop as soon as q ∈ F . Left on tape: Output
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Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Configuration

Configuration (w , q, v) denotes status after each step:
I Tape contains wv (with infinitely many 2 around)
I Head is over first symbol of v
I Machine is in state q

Start configuration: (ε, q0,w) if input is w

End configuration: (v , q, z) for a q ∈ F
I Output is z , denoted by M(w)
I In case machine doesn’t halt (!): M(w) =↗
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Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Step Relation

Step relation: Formalizes semantics of Turing machine

Definition (Step Relation)

Let M = (Q, Γ, δ, q0,F ), define ` for all w , v ∈ Γ∗, a, b ∈ Γ and q ∈ Q as:

(wa, q, bv) `


(wac , p, v) if δ(q, b) = (p, c,R),

(wa, p, cv) if δ(q, b) = (p, c,N),

(w , p, acv) if δ(q, b) = (p, c, L).

α reaches β in 1 step: α ` β
α reaches β in k steps: α `k β

α reaches β in any number of steps: α `∗ β
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Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: The Universal Machine

Turing machine model is quite simple

Can be easily simulated by a human
I Provided enough pencils, tape space and patience

Important result: Machines can simulate machines
I Turing machines are finite objects!
I Effective encoding into words over an alphabet
I Also configurations are finite! Encode them also

Simulator machine U only needs to
I Receive an encoded M as input
I Input of M is w , give that also to U
I U maintains encoded configurations of M and applies steps
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Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: The Universal Machine (Cont.)

Let 〈M〉 be encoding of machine M.

Theorem (The Universal Machine)

There exists a universal Turing machine U, such that for all Turing
machines M and all words w ∈ Σ∗:

U(〈M〉,w) = M(w)

In particular, U does not halt iff 1 M does not halt.
(Without proof.)

1“if and only if”
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Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Transducers and Acceptors

Definition so far: Receive input, compute output
We call this a transducer :

I Interpret a TM M as a function f : Σ∗ → Σ∗

I All such f are called computable functions
I Partial functions may be undefined for some inputs w

F In case M does not halt for them (M(w) =↗)
I Total functions are defined for all inputs

For decision problems L: Only want a positive or negative answer
We call this an acceptor :

I Interpret M as halting in
F Either state qyes for positive instances w ∈ L
F Or in state qno for negative instances w /∈ L

I Output does not matter, only final state
I M accepts the language L(M):

L(M) := {w ∈ Σ∗ | ∃y , z ∈ Γ∗ : (ε, q0,w) `∗ (y , qyes , z)}

Rest of the course: Mostly acceptors
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Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Multiple Tapes

Definition so far: Machine uses one tape

More convenient to have k tapes (k is a constant)
I As dedicated input/output tapes
I To save intermediate results
I To precisely measure used space (except input/output space)

Define this as k-tape Turing machines
I Still only one state, but k heads
I Equivalent to 1-tape TM in terms of expressiveness

(Encode a “column” into one square)
I Could be more efficient, but not much

Rest of the course: k-tape TM with dedicated input/output tapes
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Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Non-determinism

Definition so far: Machine is deterministic
I Exactly one next step possible

Extension: Allow different possible steps

δ : (Q − F )× Γ→ P(Q × Γ× {R,N, L})

Machine chooses non-deterministically which step to do
I Useful to model uncertainty in a system
I Imagine behaviour as a computation tree
I Each path is one possible computation
I Accepts w iff there is a path to qyes (accepting path)

Not a real machine, rather a theoretical model

Will see another characterization later

Expressiveness does not increase in general (see following Theorem)
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Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Non-determinism (Cont.)

Theorem

Given a non-deterministic TM N, one can construct a deterministic TM M
with L(M) = L(N).
Further, if N(w) accepts after t(w) steps, then there is c such that M(w)
accepts after at most ct(w) steps.

Remark

Exponential blowup concerning speed

Ignoring speed, expressiveness is the same

Note that N might not terminate on certain inputs

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 19 / 148



Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Non-determinism (Cont. 2)

Proof (Sketch).

Given a non-deterministic N and an input w

Search the computation tree of N

Breadth-first technique: Visit all “early” configurations first
I Since there may be infinite paths
I For each i ≥ 0, visit all configurations up to depth i
I If N accepts w , we will find accepting configuration at a depth t and

halt in qyes

I If N rejects w , we halt in qno or don’t terminate

Let d be maximal degree of non-determinism (choices of δ)

Above takes at most
∑t

i=0 d i steps

Can be bounded from above by ct with a suitable constant c

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 20 / 148



Basic Computability Theory Model of Computation: Turing Machines

Summary (Turing Machine)

Simple model of computation, but powerful

Clearly defined syntax and semantics

May accept languages or compute functions

May use multiple tapes

Non-determinism does not increase expressiveness

A Universal Machine exists, simulating all other machines

Remark

The machines we use from now on

are deterministic

are acceptors,

with k tapes

(except stated otherwise).
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Deciding a Problem

Recall: Turing Machines running with input w may
I halt in state qyes ,
I halt in state qno , or
I run without halting .

Given problem L and instance w , want to decide whether w ∈ L:
I Using a machine M
I If w ∈ L, M should halt in qyes

I If w /∈ L, M should halt in qno

In particular: Always terminate! (Little use otherwise...)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 22 / 148



Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Decidability and Undecidability

Definition

L is called decidable, if there exists a TM M with L(M) = L that
halts on all inputs.
REC is the set of all decidable languages.

We can decide the status of w by just running M(w).

Termination guaranteed, we won’t wait infinitely

“M decides L”

If L /∈ REC, then L is undecidable
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Decidability and Undecidability: Example

Example (PRIMES ∈ REC)

Recall PRIMES := {[p]10 | p is a prime number}
Can be decided:

I Given w = [n]10 for some n
I Check for all i ∈ (1, n) whether n is multiple of i
I If an i found: Halt in qno

I Otherwise, if all i negative: Halt in qyes

Can be implemented with a Turing machine

Always terminates (only finitely many i)

Thus: PRIMES ∈ REC
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Semi-Decidability

Definition

L is called semi-decidable, if there exists a TM M with L(M) = L.
RE is the set of all semi-decidable languages.

Note the missing “halts on all inputs”!

We can only “half-decide” the status of a given w :
I Run M, wait for answer
I If w ∈ L, M will halt in qyes

I If w /∈ L, M may not halt
I We don’t know: w /∈ L or too impatient?

“M semi-decides L”
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Class Differences

Questions at this point:
1 Are there undecidable problems?
2 Can we at least semi-decide some of them?
3 Are there any we can’t even semi-decide?

Formally: REC
?
( RE

?
( P(Σ∗)

Subtle difference between REC and RE: Termination guarantee
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Properties of Complementation

Theorem

1 L ∈ REC ⇐⇒ L ∈ REC. (“closed under taking complements”)

2 L ∈ REC ⇐⇒ (L ∈ RE∧L ∈ RE).

Proof (First part).

Direction “=⇒”:
I Assume M decides L and halts always
I Construct M ′: Like M, but swap qyes and qno

I M ′ decides L and halts always!

Direction “⇐=”:
I Exact same thing.
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Properties of Complementation

Theorem

1 L ∈ REC ⇐⇒ L ∈ REC. (“closed under taking complements”)

2 L ∈ REC ⇐⇒ (L ∈ RE∧L ∈ RE).

Proof (Second part).

Direction “=⇒”:
I Follows from REC ⊆ RE and first part

Direction “⇐=”:
I Let M1,M2 with L(M1) = L and L(M2) = L
I Given w , simulate M1(w) and M2(w) step by step, in turns
I Eventually one of them will halt in qyes

I If it was M1, halt in qyes

I It it was M2, halt in qno

I Thus, we always halt (and decide L)!
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

The Halting Problem

Approach our three questions:
1 Are there undecidable problems?
2 Can we at least semi-decide some of them?
3 Are there any we can’t even semi-decide?

Classical problem: Halting Problem
I Given a program M (Turing machine!) and an input w
I Will M(w) terminate?
I Natural problem of great practical importance

Formally: Let 〈M〉 be an encoding of M

Definition (Halting Problem)

H is the set of all Turing machine encodings 〈M〉 and words w ,
such that M halts on input w :

H := {(〈M〉,w) | M(w) 6=↗}
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Undecidability of the Halting Problem

Theorem

H ∈ RE−REC

Proof (First part).

We show H ∈ RE:

Need to show: There is a TM M ′, such that
I Given M and w
I If M(w) halts, M ′ accepts (halts in qyes)
I If M(w) doesn’t halt, M ′ halts in qno or doesn’t halt

Construct M ′: Just simulate M(w)
I If simulation halts, accept (i.e. halt in qyes)
I If simulation doesn’t halt, we also won’t

Thus: L(M ′) = H
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Undecidability of the Halting Problem (Cont.)

Theorem

H ∈ RE−REC

Proof (Second part).

We show H /∈ REC:

Need to show: There is no TM MH , such that
I Given M and w
I If M(w) halts, MH accepts (halts in qyes)
I If M(w) doesn’t halt, MH rejects (halts in qno)
I Note: MH always halts!

We can’t use simulation!
I What if it doesn’t halt?

New approach: Indirect proof
I Assume there is MH with above properties
I Show a contradiction
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Undecidability of the Halting Problem (Cont. 2)

Theorem

H ∈ RE−REC

Proof (Second part, cont.)

We show H /∈ REC: Assume there is MH that always halts

Build another machine N:
I On input w , simulate MH(w ,w)
I If simulation halts in qyes , enter infinite loop
I If simulation halts in qno , accept (i.e. halt in qyes)

N is Turing machine and 〈N〉 its encoding. Does N(〈N〉) halt?
Assume “yes, N(〈N〉) halts”:

I By construction of N, MH(〈N〉, 〈N〉) halted in qno

I Definition of H: N(〈N〉) does not halt. Contradiction!

Assume “no, N(〈N〉) doesn’t halt”:
I By construction of N, MH(〈N〉, 〈N〉) halted in qyes

I Definition of H: N(〈N〉) does halt. Contradiction!

N can not exist! =⇒ MH can not exist.
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Class Differences: Results

Know now: H ∈ RE−REC, thus: REC ( RE

What about RE and P(Σ∗)?
I Is there an L ⊆ Σ∗ that’s not even semi-decidable?

Counting argument:
I RE is countably infinite: Enumerate all Turing machines
I P(Σ∗) is uncountably infinite: Σ∗ is countably infinite

Corollary

REC ( RE ( P(Σ∗)

Remark

Actually, we even know one of those languages: H /∈ RE

Otherwise, H would be decidable: (H ∈ RE∧H ∈ RE) =⇒ H ∈ REC
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Reductions

We saw: Some problems are harder than others

Possible to compare them directly?

Concept for this: Reductions
I Given problems A and B
I Assume we know how to solve A using B
I Then: Sufficient to find out how to solve B for solving A
I We reduced A to B
I Consequence: A is “easier” than B

Different formal concept established
I Differ in how B is used when solving A
I We use Many-one reductions
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Reductions: Definition

Definition (Many-one Reduction)

A ⊆ Σ∗ is many-one reducible to B ⊆ Σ∗ (A ≤m B),
if there is f : Σ∗ → Σ∗ (computable and total), such that

∀w ∈ Σ∗ : w ∈ A ⇐⇒ f (w) ∈ B

f the reduction function.

f maps positive to positive instances, negative to negative

Impact on decidability:
I Given problems A and B with A ≤m B
I And given Mf calculating reduction f
I And given MB deciding B
I Decide A by simulating Mf and on its output MB
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Reductions: Properties

Lemma

For all A,B and C the following hold:

1 A ≤m B ∧ B ∈ REC =⇒ A ∈ REC (Closedness of REC under ≤m)

2 A ≤m B ∧ B ∈ RE =⇒ A ∈ RE (Closedness of RE under ≤m)

3 A ≤m B ∧ B ≤m C =⇒ A ≤m C (Transitivity of ≤m)

4 A ≤m B ⇐⇒ A ≤m B

Proof.

First two: We just discussed this

Second two: Easy exercise
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Reductions: Example

Example (The Problems)

Need to introduce two problems: REACH and REG-EMPTY

First Problem: The reachability problem:

REACH := {(G , u, v) | there is a path from u to v in G}

I G is a finite directed graph; u, v are nodes in G
I Question: “Is v reachable from u?”
I Easily solvable using standard breath first search: REACH ∈ REC

Second Problem: Emptiness problem for regular languages

REG-EMPTY := {〈D〉 | L(D) = ∅}

I D encodes a Deterministic Finite Automaton
I Question: “Is the language D accepts empty?”
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Reductions: Example (Cont.)

Example (The Reduction)

Will reduce REG-EMPTY to REACH

Idea: Interpret DFA D as a graph
I Is a final state reachable from initial state?
I Thus: Start node u is initial state
I Problem: Want just one target node v , but many final states possible
I Solution: Additional node v with edges from final states

Result: f with 〈D〉 7→ (G , u, v)

L(D) empty ⇐⇒ u can not reach v

Thus: REG-EMPTY ≤m REACH

Remark: Implies REG-EMPTY ∈ REC
(Closedness of REC under complement!)
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

A Second Example: Halting Problem with empty input

Lemma

The Halting Problem with empty input is undecidable, i.e.:

Hε := {〈M〉 | M(ε) 6=↗} /∈ REC

Proof.

Already know: H /∈ REC
Sufficient to find a reduction H ≤m Hε (Closedness!)
Given is (〈M〉,w): A machine M with input w
Idea: Encode w into the states
Construct a new machine M ′:

1 Ignore input and write w on tape (is encoded in states of M ′)
2 Simulate M

f : (〈M〉,w) 7→ 〈M ′〉 is computable: Simple syntactical manipulations!
Reduction property by construction:

I If (〈M〉,w) ∈ H, then M ′ terminates with all inputs (also with empty input)
I If (〈M〉,w) /∈ H, then M ′ doesn’t ever terminate (also not with empty input)
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Rice’s Theorem: Introduction

We know now: Halting is undecidable for Turing machines

Even for just empty input!

Are other properties undecidable?

(Maybe halting is just a strange property..)

Will see now: No “non-trivial” behavioural property is decidable!
I For Turing machines
I Simpler models behave better (DFA..)
I Non-trivial: Some Turing machines have it, some don’t

High practical relevance:
I Either have to restrict model (less expressive)
I Or only approximate answers (less precise)

Formally: Rice’s Theorem
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Rice’s Theorem: Formal formulation

Theorem (Rice’s Theorem)

Let C be a non-trivial class of semi-decidable languages, i.e., ∅ ( C ( RE.
Then the following LC is undecidable:

LC := {〈M〉 | L(M) ∈ C}

Proof (Overview).

First assume ∅ /∈ C
Then there must be a non-empty A ∈ C (since C is non-empty)
We will reduce H to LC
Idea:

I We are given M with input w
I Simulate M(w)
I If it halts, we will semi-decide A
I If it doesn’t halt, we will semi-decide ∅ (never accept)
I This is the reduction!
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Rice’s Theorem: Formal formulation (Cont.)

Theorem (Rice’s Theorem)

Let C be a non-trivial class of semi-decidable languages, i.e., ∅ ( C ( RE.
Then the following LC is undecidable:

LC := {〈M〉 | L(M) ∈ C}

Proof (Details).

Recall: ∅ /∈ C, A ∈ C, let MA be machine for A
Construct a new machine M ′:

1 Input y , first simulate M(w) on second tape
2 If M(w) halts, simulate MA(y)

Reduction property by construction:
I If (〈M〉,w) ∈ H, then L(M ′) = A, thus 〈M ′〉 ∈ LC
I If (〈M〉,w) /∈ H, then L(M ′) = ∅, thus 〈M ′〉 /∈ LC

What about the case ∅ ∈ C? Similar construction showing H ≤m LC
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Rice’s Theorem: Examples

Example

The following language is undecidable:

L := {〈M〉 | L(M) contains at most 5 words}

Follows from Rice’s Theorem since C 6= ∅ and C 6= RE

Thus: For any k, can’t decide if an M only accepts at most k inputs

Example

The following language is decidable:

L := {〈M〉 | M contains at most 5 states}

Easy check by looking at encoding of M

Not a behavioural property
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Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Summary Computability Theory

Defined a model of computation: Turing machines

Explored properties:
I Decidability and Undecidability
I Semi-Decidability
I Example: The Halting problem is undecidable

Reductions as a relative concept

Closedness allows using them for absolute results

Rice’s Theorem:
All non-trivial behavioural properties of TM are undecidable.
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Complexity Classes

Course Outline

0 Introduction

1 Basic Computability Theory
Formal Languages
Model of Computation: Turing Machines
Decidability, Undecidability, Semi-Decidability

2 Complexity Classes
Landau Symbols: The O(·) Notation
Time and Space Complexity
Relations between Complexity Classes

3 Feasible Computations: P vs. NP
Proving vs. Verifying
Reductions, Hardness, Completeness
Natural NP-complete problems

4 Advanced Complexity Concepts
Non-uniform Complexity
Probabilistic Complexity Classes
Interactive Proof Systems
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Complexity Classes Introduction

Restricted Resources

Previous Chapter: Computability Theory
I “What can algorithms do?”

Now: Complexity Theory
I “What can algorithms do with restricted resources?”
I Resources: Runtime and memory

Assume the machines always halt in qyes or qno

I But after how many steps?
I How many tape positions were necessary?
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Complexity Classes Landau Symbols

Landau Symbols

Resource bounds will depend on input size

Described by functions f : N→ N
Need ability to express “grows in the order of”

I Consider f1(n) = n2 and f2(n) = 5 · n2 + 3
I Eventually, n2 dominates for large n
I Both express “quadratic growth”
I Want to see all c1 · n2 + c2 equivalent
I Asymptotic behaviour

Formal notation for this: O(n2)

Will provide a kind of upper bound of asymptotic growth
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Complexity Classes Landau Symbols

Landau Symbols: Definition

Definition

Let g : N→ N. O(g) denotes the set of all functions f : N→ N such that
there are n0 and c with

∀n ≥ n0 : f (n) ≤ c · g(n).

We also just write f (n) = O(g(n)).

Lemma (Alternative characterization)

For f , g : N→ N>0 the following holds:

f ∈ O(g) ⇐⇒ ∃c > 0 : lim sup
n→∞

f (n)

g(n)
≤ c

(Without proof.)
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Complexity Classes Landau Symbols

Landau Symbols: Examples

We have 5 · n2 + 3 = O(n2)

One even writes O(n) = O(n2) (meaning “⊆”)

Both is abuse of notation! Not symmetric: O(n2) 6= O(n)!

Examples

I n · log(n) = O(n2)

I nc = O(2n) for all constants c

I O(1) are the bounded functions

I nO(1) are the functions bounded by a polynomial

Other symbols exist for lower bounds (Ω), strict bounds (o, ω) and
“grows equally” (Θ)
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Complexity Classes Time and Space Complexity

Proper complexity functions

Landau-Symbols classify functions according to growth

Which functions to consider for resource bounds?

Only “proper” ones:

Definition

Let f : N→ N be a computable function.

1 f is time-constructible if there exists a TM which on input 1n stops after
O(n + f (n)) steps.

2 f is space-constructible if there exists a TM which on input 1n outputs 1f (n)

and does not use more than O(f (n)) space.

This allows us to assume “stopwatches”

All common “natural” functions have these properties
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Complexity Classes Time and Space Complexity

Resource measures

Definition
1 The runtime timeM(w) of a TM M with input w is defined as:

timeM(w) := max{t ≥ 0 | ∃y , z ∈ Γ∗, q ∈ F : (w , q0, ε) `t (y , q, z)}

2 If, for all inputs w and a t : N→ N it holds that timeM(w) ≤ t(|w |),
then M is t(n)-time-bounded . Further:

DTIME(t(n)) := {L(M) | M is t(n)-time-bounded}

3 The required space spaceM(w) of a TM M with input w is defined as:

spaceM(w) := max{n ≥ 0 | M uses n squares on a working tape}

4 If for all inputs w and an s : N→ N it holds that spaceM(w) ≤ s(|w |),
then M is s(n)-space-bounded . Further:

DSPACE(s(n)) := {L(M) | M is s(n)-space-bounded}
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Complexity Classes Time and Space Complexity

Resource measures (Cont.)

Definition
1 For functions, we have:

FTIME(t(n)) := {f | ∃M being t(n)-time-bounded and computing f }

2 For non-deterministic M, time and space are as above, and we have:

NTIME(t(n)) := {L(M) | M is non-det. and t(n)-time-bounded}
NSPACE(s(n)) := {L(M) | M is non-det. and s(n)-space-bounded}

Recall: Non-deterministic machines can choose different next steps
I Can be imagined as a computation tree
I Time and space bounds for all paths in the tree

Note: spaceM(w) is for the working tapes
I Only they “consume memory” during the computation
I Input (read-only) and output (write-only) should not count
I Allows notion of sub-linear space, e.g., log(|w |)
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Complexity Classes Time and Space Complexity

Common Complexity Classes

Deterministic time complexity classes:
I Linear time:

LINTIME :=
⋃
c≥1

DTIME(cn + c) = DTIME(O(n))

I Polynomial time:

P :=
⋃
c≥1

DTIME(nc + c) = DTIME(nO(1))

I Polynomial time functions:

FP :=
⋃
c≥1

FTIME(nc + c) = FTIME(nO(1))

I Exponential time

EXP :=
⋃
c≥1

DTIME(2nc +c) = DTIME
(

2nO(1)
)
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Complexity Classes Time and Space Complexity

Common Complexity Classes (Cont.)

Deterministic space complexity classes:
I Logarithmic space:

L := DSPACE(O(log(n)))

I Polynomial space:

PSPACE := DSPACE(nO(1))

I Exponential space:

EXPSPACE := DSPACE
(

2nO(1)
)

Non-deterministic classes defined similarly:

NLINTIME, NP, NEXP, NL, NPSPACE and NEXPSPACE
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Complexity Classes Time and Space Complexity

Common Complexity Classes: Example

Example (REACH)

Consider again the reachability problem:

REACH := {(G , u, v) | there is a path from u to v in G}
Decidable – but how much space is needed?
Non-deterministically : REACH ∈ NL

I Explore graph beginning with u
I Choose next node non-deterministically, for at most n steps
I If there is a path to v , it can be found that way
I Space: For step counter and number of current node: O(log(n))

Deterministically : REACH ∈ DSPACE(O(log(n)2))
I Sophisticated recursive algorithm
I Split path p of length ≤ n:

F p = p1p2 with p1, p2 of length ≤ n/2
F Iterate over all intermediate nodes

I Space: Recursion stack depth log(n) and elements log(n): O(log(n)2)
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Complexity Classes Relations between Complexity Classes

Complexity Class Relations

Clear from definitions:

LINTIME ⊆ P ⊆ EXP

Same relation for non-deterministic classes:

NLINTIME ⊆ NP ⊆ NEXP

Only inclusion, no separation yet:
I Know that LINTIME ⊆ P
I But is there L ∈ P− LINTIME?
I Such an L would separate LINTIME and P

Will now see a very “fine-grained” separation result

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 56 / 148



Complexity Classes Relations between Complexity Classes

Hierarchy Theorem

Theorem (Hierarchy Theorem)

Let f : N→ N be time-constructible and g : N→ N with

lim inf
n→∞

g(n) · log(g(n))

f (n)
= 0.

Then there exists L ∈ DTIME(f (n))− DTIME(g(n)).

Let f : N→ N be space-constructible and g : N→ N with

lim inf
n→∞

g(n)

f (n)
= 0.

Then there exists L ∈ DSPACE(f (n))− DSPACE(g(n)).

(Without proof.)
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Complexity Classes Relations between Complexity Classes

Hierarchy Theorem: Examples

Example

Let Ck := DTIME(O(nk))

Using time hierarchy theorem:

C1 ( C2 ( C3 ( . . . (Infinite hierarchy)

Means: Let p(n) and q(n) be polynomials, deg p < deg q

Then there is L such that:
I Decidable in O(q(n)) time
I Not decidable in O(p(n)) time

Remark: Theorem states “more time means more power”

Also the case with REC ( RE:
I REC: Time bounded: Always halt
I RE: May not halt, “infinite time”
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Complexity Classes Relations between Complexity Classes

Determinism vs. Non-determinism

Theorem

For each space-constructible function f : N→ N, the following holds:

DTIME(f ) ⊆ NTIME(f ) ⊆ DSPACE(f ) ⊆ NSPACE(f )

Proof (Overview).

First and third clear: Determinism is special case
Now show NTIME(f ) ⊆ DSPACE(f )
Time bounded by f (n) implies space bounded by f (n)
Still need to remove non-determinism
Key idea:

I Time bound f (n): At most f (n) non-deterministic choices
I Computation tree at most f (n) deep
I Represent paths by strings of size f (n)
I Simulate all paths by enumerating the strings
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Complexity Classes Relations between Complexity Classes

Determinism vs. Non-determinism (Cont.)

Theorem

For each space-constructible function f : N→ N, the following holds:

DTIME(f ) ⊆ NTIME(f ) ⊆ DSPACE(f ) ⊆ NSPACE(f )

Proof (Details).

Want to show NTIME(f ) ⊆ DSPACE(f )
Let L ∈ NTIME(f ) and N corresponding machine
Let d be maximal degree of non-determinism
Build new machine M:

1 Systematically generate words c ∈ {1, . . . , d}f (n)

2 Simulate N with non-deterministic choices c
3 Repeat until all words generated (overwrite c each time)

Simulation is deterministic and needs only O(f (n)) space
I (But takes exponentially long!)
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Complexity Classes Relations between Complexity Classes

Deterministic vs. Non-deterministic Space

Theorem implies:

P ⊆ NP ⊆ PSPACE ⊆ NPSPACE

Thus, in context of polynomial bounds:
I Non-determinism “beats” determinism
I Space “beats” time

But are these inclusions strict?

Will now see: PSPACE = NPSPACE

Recall: REACH ∈ DSPACE(O(log(n)2))
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Complexity Classes Relations between Complexity Classes

Deterministic vs. Non-deterministic Space (Cont.)

Theorem (Savitch)

For each space-constructible function f : N→ N, the following holds:

NSPACE(f ) ⊆ DSPACE(f 2)

Proof (Sketch).

Let L ∈ NSPACE(f ) and ML corresponding non-deterministic TM
Consider configuration graph of ML for an input w

I Each node is a configuration
I Edges are given by step relation `
I ML space bounded, thus only c f (|w |) configurations

Assume just one final accepting configuration
Question: “Is there a path from initial to final configuration?”
Reachability problem!

Solve it with O
(

log
(
c f (n)

)2
)

= O(f (n)2) space
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Complexity Classes Relations between Complexity Classes

Polynomial Complexity Classes

Corollary

P ⊆ NP ⊆ PSPACE = NPSPACE

Previous theorem implies NPSPACE ⊆ PSPACE

First two inclusions: Difficult, next chapter!

Following concept will be of use:

Definition

Let C ⊆ P(Σ∗) be a class of languages. We define:

co- C := {L | L ∈ C}

For deterministic C ⊆ REC: C = co- C

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 63 / 148



Complexity Classes Relations between Complexity Classes

Complementary Classes: Asymmetries

Consider RE and co- RE:
I For RE the TM always halts on the positive inputs

F “For x ∈ L there is a finite path to qyes”

I For co- RE it always halts on the negative inputs
F “For x /∈ L there is a finite path to qno”

I RE 6= co- RE (Halting Problem, ..)
I REC = co- REC and REC = RE∩ co- RE

Consider NPSPACE and co- NPSPACE:
I We know PSPACE = NPSPACE and PSPACE = co- PSPACE
I Thus NPSPACE = co- NPSPACE

What about P, NP and co- NP?
I Looks like RE situation:

F NP: “For x ∈ L there is a bounded path to qyes”
F co- NP: “For x /∈ L there is a bounded path to qno”

I Surprisingly: Relationship not known!
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Feasible Computations: P vs. NP Introduction

Course Outline
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Course Outline
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Feasible Computations: P vs. NP Introduction

Feasible Computations

Will now focus on classes P and NP

Polynomial time bounds as “feasible”, “tractable”, “efficient”
I Polynomials grow only “moderately”
I Many practical problems polynomial
I Often with small degrees (n2 or n3)
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Feasible Computations: P vs. NP Proving vs. Verifying

Recall P and NP

Introduced P and NP via Turing machines:
I Polynomial time bounds
I Deterministic vs. non-deterministic operation

Recall P: For L1 ∈ P
I Existence of a deterministic TM M
I Existence of a polynomial pM(n)
I For each input x ∈ Σ∗ runtime ≤ pM(|x |)

Recall NP: For L2 ∈ NP
I Existence of a non-deterministic TM N
I Existence of a polynomial pN(n)
I For each input x ∈ Σ∗ runtime ≤ pN(|x |)
I For all computation paths

Theoretical model – practical significance?

Introduce now a new characterization of NP
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Feasible Computations: P vs. NP Proving vs. Verifying

A new NP characterization

Definition

Let R ∈ Σ∗ × Σ∗ (binary relation). R is polynomially bounded , if there
exists a polynomial p(n), such that:

∀(x , y) ∈ R : |y | ≤ p(|x |)

Lemma

NP is the class of all L such that there exists a polynomially bounded
RL ∈ Σ∗ × Σ∗ satisfying:

RL ∈ P, and

x ∈ L ⇐⇒ ∃w : (x ,w) ∈ RL.

We call w a witness (or proof) for x ∈ L and RL the witness relation.
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Feasible Computations: P vs. NP Proving vs. Verifying

Proving vs. Verifying

For L ∈ P:
I Machine must decide membership of x in polynomial time
I Interpret as “finding a proof ” for x ∈ L

For L ∈ NP: (new characterization)
I Machine is provided a witness w
I Interpret as “verifying the proof ” for x ∈ L

Efficient proving and verifying procedures:
I For P, runtime is bounded
I For NP, also witness size is bounded

Write L ∈ NP as:

L = {x ∈ Σ∗ | ∃w ∈ Σ∗ : (x ,w) ∈ RL}
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Feasible Computations: P vs. NP Proving vs. Verifying

Proving vs. Verifying (Cont.)

P-problems: solutions can be efficiently found

NP-problems: solutions can be efficiently checked

Checking certainly a prerequisite for finding (thus P ⊆ NP)

But is finding more difficult?
I Intuition says: “Yes!”
I Theory says: “We don’t know.” (yet?)

Formal formulation:
P

?
= NP

One of the most important questions of computer science!
I Many proofs for either “=” or “ 6=”
I None correct so far
I Clay Mathematics Institute offers $1.000.000 prize
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Feasible Computations: P vs. NP Proving vs. Verifying

A new NP characterization (Cont.)

Lemma (Revisited)

NP is the class of all L such that there exists a polynomially bounded
RL ∈ Σ∗ × Σ∗ satisfying:

RL ∈ P, and
x ∈ L ⇐⇒ ∃w : (x ,w) ∈ RL. (w is a witness)

Proof (First part).

First, let L ∈ NP. Let N be the machine with pN(n) time bound.
Want to show: RL as above exists
Idea:

I On input x , all computations do ≤ pN(|x |) steps
I x ∈ L iff an accepting computation exists
I Encode computation (non-deterministic choices) into w
I All such pairs (x ,w) define RL

RL has all above properties
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Feasible Computations: P vs. NP Proving vs. Verifying

A new NP characterization (Cont. 2)

Lemma (Revisited)

NP is the class of all L such that there exists a polynomially bounded
RL ∈ Σ∗ × Σ∗ satisfying:

RL ∈ P, and
x ∈ L ⇐⇒ ∃w : (x ,w) ∈ RL. (w is a witness)

Proof (Second part).

Now, let L as above, using RL bounded by p(n)
Want to show: Non-deterministic N exists, polynomially bounded
Idea to construct N:

I RL bounds length of w by p(|x |)
I RL ∈ P: There is a M for checking RL

I N can “guess” w first
I Then simulate M for checking (x ,w) ∈ RL

I Accepting path exists iff ∃w : (x ,w) ∈ RL

N is polynomially time bounded
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Feasible Computations: P vs. NP Proving vs. Verifying

A new co- NP characterization

Remark

Recall: All L ∈ NP can now be written as:

L = {x ∈ Σ∗ | ∃w ∈ Σ∗ : (x ,w) ∈ RL}
Read this as:

I Witness relation RL

I For each positive instance, there is a proof w
I For no negative instance, there is a proof w
I The proof is efficiently checkable

Similar characterization for all L′ ∈ co- NP:

L′ = {x ∈ Σ∗ | ∀w ∈ Σ∗ : (x ,w) /∈ RL′}
Read this as:

I Disproof relation RL′

I For each negative instance, there is a disproof w
I For no positive instance, there is a disproof w
I The disproof is efficiently checkable
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Feasible Computations: P vs. NP Proving vs. Verifying

Boolean Formulas

Definition

Let X = {x1, . . . , xN} be a set of variable names.

Define boolean formulas BOOL inductively:
I ∀i : xi ∈ BOOL.
I ϕ1, ϕ2 ∈ BOOL =⇒ (ϕ1 ∧ϕ2), (¬ϕ1) ∈ BOOL (conjunction and negation)

A truth assignment for the variables in X is a word α1 . . . αN︸ ︷︷ ︸
α

∈ {0, 1}N .

The value ϕ(α) of ϕ under α is defined inductively:

ϕ : xi ¬ψ ψ1 ∧ ψ2

ϕ(α) : αi 1− ψ(α) ψ1(α) · ψ2(α)

Shorthand notations:
I ϕ1 ∨ ϕ2 (disjunction) for ¬(¬ϕ1 ∧ ¬ϕ2),
I ϕ1 → ϕ2 (implication) for ¬ϕ1 ∨ ϕ2

I ϕ1 ↔ ϕ2 (equivalence) for (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)
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Feasible Computations: P vs. NP Proving vs. Verifying

Example: XOR Function

Example

Consider the exclusive or XOR with m arguments:

XOR(z1, . . . , zm) :=
m∨

i=1

zi ∧
∧

1≤i<j≤m

¬(zi ∧ zj)

XOR(z1, . . . , zm) = 1 ⇐⇒ zj = 1 for exactly one j

Can also be used as shorthand notation.
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Feasible Computations: P vs. NP Proving vs. Verifying

Example for NP: The Satisfiability Problem

Example

Consider ψ1 = (x1 ∨ ¬x2) ∧ x3 and ψ2 = (x1 ∧ ¬x1):
I ψ1(α) = 1 for α = 011
I ψ2(α) = 0 for all α

ϕ ∈ BOOL is called satisfiable, if ∃α : ϕ(α) = 1

Can encode boolean formula into words over fixed alphabet Σ

Language of all satisfiable formulas, the satisfiability problem:

SAT := {〈ϕ〉 | ϕ ∈ BOOL is satisfiable}

Obviously, SAT ∈ NP:
I Witness for positive instance 〈ϕ〉 is α with ϕ(α) = 1
I Size of witness: linearly bounded in |〈ϕ〉|
I Validity check efficient

Unknown, whether SAT ∈ P!
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Feasible Computations: P vs. NP Reductions, Hardness, Completeness

Bounded Reductions

Comparing P and NP by directly comparing problems

Assume A,B ∈ NP and C ∈ P
I How do A and B relate?
I Is C “easier” than A and B?
I Maybe we just didn’t find good algorithms for A or B?

Recall: Reductions
I Given problems A and B
I Solve A by reducing it to B and solving B
I Tool for that: Reduction function f
I Consequence: A is “easier” than B

Used many-one reductions in unbounded setting

Now: Bounded setting , so f should be also bounded!
I Introduce “Cook reductions”
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Feasible Computations: P vs. NP Reductions, Hardness, Completeness

Polynomial Reduction (Cook Reduction)

Definition

A ⊆ Σ∗ is polynomially reducible to B ⊆ Σ∗ (written A ≤p
m B),

if there f ∈ FP, such that

∀w ∈ Σ∗ : w ∈ A ⇐⇒ f (w) ∈ B

Lemma

For all A,B and C the following hold:

1 A ≤p
m B ∧ B ∈ P =⇒ A ∈ P (Closedness of P under ≤p

m)

2 A ≤p
m B ∧ B ∈ NP =⇒ A ∈ NP (Closedness of NP under ≤p

m)

3 A ≤p
m B ∧ B ≤p

m C =⇒ A ≤p
m C (Transitivity of ≤p

m)

4 A ≤p
m B ⇐⇒ A ≤p

m B
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Feasible Computations: P vs. NP Reductions, Hardness, Completeness

Hardness, Completeness

Can compare problems now

Introduce now “hard” problems for a class C:
I Can solve whole C if just one of them
I Are more difficult then everything in C

Definition

I A is called C-hard , if: ∀L ∈ C : L ≤p
m A

I If A is C-hard and A ∈ C, then A is called C-complete

I NPC is the class of all NP-complete languages

NPC: “Most difficult” problems in NP

Solve one of them, solve whole NP

Solve one of them efficiently , solve whole NP efficiently
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Feasible Computations: P vs. NP Reductions, Hardness, Completeness

Hardness, Completeness: Properties

Lemma

1 A is C-complete if and only if A is co- C-complete.

2 P∩NPC 6= ∅ =⇒ P = NP

3 A ∈ NPC∧ A ≤p
m B ∧ B ∈ NP =⇒ B ∈ NPC

Proof (First part).

Let A be C-complete, and L ∈ co- C
Want to show: L ≤p

m A

Indeed: L ∈ co- C ⇐⇒ L ∈ C =⇒ L ≤p
m A ⇐⇒ L ≤p

m A

Other direction similar (symmetry)
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Feasible Computations: P vs. NP Reductions, Hardness, Completeness

Hardness, Completeness: Properties (Cont.)

Lemma

1 A is C-complete if and only if A is co- C-complete.

2 P∩NPC 6= ∅ =⇒ P = NP

3 A ∈ NPC∧ A ≤p
m B ∧ B ∈ NP =⇒ B ∈ NPC

Proof (Second part).

Assume A ∈ P∩NPC and let L ∈ NP

Want to show: L ∈ P (since then P = NP)

L ∈ NP =⇒ L ≤p
m A since A ∈ NPC

L ≤p
m A =⇒ L ∈ P since A ∈ P
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Feasible Computations: P vs. NP Reductions, Hardness, Completeness

Hardness, Completeness: Properties (Cont. 2)

Lemma

1 A is C-complete if and only if A is co- C-complete.

2 P∩NPC 6= ∅ =⇒ P = NP

3 A ∈ NPC∧ A ≤p
m B ∧ B ∈ NP =⇒ B ∈ NPC

Proof (Third part).

Assume A ∈ NPC, B ∈ NP, A ≤p
m B and L ∈ NP

Want to show: L ≤p
m B (since then, B is NP-complete)

L ∈ NP =⇒ L ≤p
m A since A ∈ NPC

L ≤p
m A =⇒ L ≤p

m B since A ≤p
m B (transitivity!)
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Feasible Computations: P vs. NP Reductions, Hardness, Completeness

A first NP-complete Problem

Do NP-complete problems actually exist? Indeed:

Lemma

The following language is NP-complete:

NPCOMP := {(〈M〉, x , 1n) | M is NTM and accepts x after ≤ n steps}

(“NTM” means “non-deterministic Turing machine”.)

How to prove a problem A is NP-complete? 2 parts:

1. Membership: Show A ∈ NP
(Directly or via A ≤p

m B for a B ∈ NP)
2. Hardness: Show L ≤p

m A for all L ∈ NP
(Directly or via C ≤p

m A for a C which is NP-hard)
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Feasible Computations: P vs. NP Reductions, Hardness, Completeness

A first NP-complete Problem (Cont.)

Lemma

The following language is NP-complete:

NPCOMP := {(〈M〉, x , 1n) | M is NTM and accepts x after ≤ n steps}

Proof (First part).

Want to show: NPCOMP ∈ NP
Given (〈M〉, x , 1n)
If M accepts x in ≤ n steps, then at most n non-deterministic choices
For each x , these choices are witness w !

I Exactly the positive instances x have one w
I |w | is bounded by n
I Efficient check by simulating that path

All (x ,w) are witness relation RL, so NPCOMP ∈ NP
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Feasible Computations: P vs. NP Reductions, Hardness, Completeness

A first NP-complete Problem (Cont. 2)

Lemma

The following language is NP-complete:

NPCOMP := {(〈M〉, x , 1n) | M is NTM and accepts x after ≤ n steps}

Proof (Second part).

Want to show now: NPCOMP is NP-hard
Let L ∈ NP, decided by ML, bound p(n)
Show L ≤p

m NPCOMP with reduction function:

f : x 7→ (〈ML〉, x , 1p(|x |))

I f ∈ FP
I If x ∈ L, then ML accepts x within p(|x |) steps
I If x /∈ L, then ML never accepts x
I Thus: x ∈ L ⇐⇒ f (x) ∈ NPCOMP
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Feasible Computations: P vs. NP NP-completeness of SAT

NP-completeness of SAT

Know now: There is an NP-complete set

Practical relevance?

Are there “natural” NP-complete problems?

Recall the satisfiability problem:

SAT := {〈ϕ〉 | ϕ ∈ BOOL is satisfiable}

We saw that SAT ∈ NP:
I A satisfying truth assignment α is witness

Even more, it’s one of the most difficult NP-problems:

Theorem (Cook, Levin)

SAT is NP-complete.
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Feasible Computations: P vs. NP NP-completeness of SAT

NP-completeness of SAT: Proof ideas

We will show NPCOMP ≤p
m SAT

Need reduction function f ∈ FP such that:
I Input (〈M〉, x , 1n): Machine M, word x , runtime bound n
I Output ψ: Boolean formula such that

(〈M〉, x , 1n) ∈ NPCOMP ⇐⇒ ψ ∈ SAT .

Assume M has just one tape

If M accepts x , then within n steps

Only 2n + 1 tape positions reached!

Central idea:
I Imagine a configuration as a line, O(n) symbols
I Whole computation as a matrix with n lines
I Encode matrix into formula ψ
I ψ satisfiable iff computation reaches qyes

I Formula size = Matrix size = O(n2)
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Feasible Computations: P vs. NP NP-completeness of SAT

NP-completeness of SAT: Proof ideas (Cont.)

Note: M is non-deterministic
I Different computations possible for each x
I Different paths in computation tree

Matrix represents one path to qyes

If x ∈ L(M) then there is at least one path to qyes

I Each path described by one matrix
I Thus, at least one matrix!

If x /∈ L(M) then there no path to qyes

I Thus, there is no matrix!

Formula ψ describes a matrix which
I Represents a computation path
I Of length at most n
I To qyes

Thus: ψ satisfiable iff accepting computation path exists!
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Feasible Computations: P vs. NP NP-completeness of SAT

NP-completeness of SAT: Proof details

Describe now the formula ψ

Given is M, states Q = {q0, . . . , qk}, tape alphabet Γ = {a1, . . . , al}
Final state qyes ∈ Q

Used boolean variables:
I Qt,q for all t ∈ [0, n] and q ∈ Q.

Interpretation: After step t, the machine is in state q.
I Ht,i for all t ∈ [0, n] and i ∈ [−n, n].

Interpretation: After step t, the tape head is at position i .
I Tt,i,a for all t ∈ [0, n], i ∈ [−n, n] and a ∈ Γ.

Interpretation: After step t, the tape contains symbol a at position i .

Number of variables: O(n2)

Structure of ψ:

ψ := Conf ∧ Start ∧ Step ∧ End
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Feasible Computations: P vs. NP NP-completeness of SAT

ψ := Conf ∧ Start ∧ Step ∧ End

Part Conf of ψ:
I Ensures: Satisfying truth assignments describe valid computations

Again, 3 parts:

Conf := ConfQ ∧ ConfH ∧ ConfT

ConfQ :=
n∧

t=0

XOR(Qt,q0 , . . . ,Qt,qk
)

ConfH :=
n∧

t=0

XOR(Ht,−n, . . . ,Ht,n)

ConfT :=
n∧

t=0

n∧
i=−n

XOR(Tt,i ,a1 , . . . ,Tt,i ,al
)
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Feasible Computations: P vs. NP NP-completeness of SAT

ψ := Conf ∧ Start ∧ Step ∧ End

Part Start of ψ:
I Ensures: At t = 0, machine is in start configuration

One single formula:

Start := Q0,q0 ∧ H0,0 ∧
−1∧

i=−n

T0,i ,2 ∧
|x |−1∧
i=0

T0,i ,xi+1
∧

n∧
i=|x |

T0,i ,2
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Feasible Computations: P vs. NP NP-completeness of SAT

ψ := Conf ∧ Start ∧ Step ∧ End

Part Step of ψ:
I Ensures: At each step, machine executes a legal action
I Only one tape field changed; head moves by one position
I Consistency with δ

Step := Step1 ∧ Step2

Step1 :=
n−1∧
t=0

n∧
i=−n

∧
a∈Γ

((¬Ht,i ∧ Tt,i ,a)→ Tt+1,i ,a)

Step2 :=
n−1∧
t=0

n∧
i=−n

∧
a∈Γ

∧
p∈Q

(
(Qt,p ∧ Ht,i ∧ Tt,i ,a)

→
∨

(q,b,D)∈δ(p,a)

(Qt+1,q ∧ Ht+1,i+D ∧ Tt+1,i ,b)
)
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Feasible Computations: P vs. NP NP-completeness of SAT

ψ := Conf ∧ Start ∧ Step ∧ End

Part End of ψ:
I Ensures: Eventually , machine reaches an accepting configuration

One single formula:

End :=
n∨

t=0

Qt,qyes

Completes proof:
I By construction, ψ ∈ SAT ⇐⇒ (〈M〉, x , 1n) ∈ NPCOMP
I Construction is efficient

2
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Feasible Computations: P vs. NP NP-completeness of SAT

co- NP-completeness of UNSAT

Remark

SAT is NP-complete

Consider its complement:

UNSAT := {〈ϕ〉 | ϕ ∈ BOOL is not satisfiable} = SAT

Clearly, UNSAT ∈ co- NP:
I Disproof for 〈ϕ〉 is α with ϕ(α) = 1
I Can be checked efficiently, like for SAT
I Follows from SAT ∈ NP anyway

SAT is NP-complete ⇐⇒ UNSAT is co- NP-complete

Will now study some more NP-complete problems!
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Feasible Computations: P vs. NP Natural NP-complete problems

CIRSAT: Satisfiability of Boolean Circuits

Definition (Boolean Circuit)

Let X = {x1, . . . , xN} be a set of variable names.

A boolean circuit over X is a sequence c = (g1, . . . , gm) of gates:

gi ∈ {⊥,>, x1, . . . , xN , (¬, j), (∧, j , k)}1≤j ,k<i

Each gi represents a boolean function f
(i)
c with N inputs α ∈ {0, 1}N :

gi (α) : ⊥ > xi (¬, j) (∧, j , k)

f
(i)
c (α) : 0 1 αi 1− f

(j)
c (α) f

(j)
c (α) · f (k)

c (a)

Use a ∨ b as shorthand for ¬(¬a ∧ ¬b)

Whole circuit c represents boolean function fc(α) := f
(m)
c (α).

c is satisfiable if ∃α ∈ {0, 1}N such that fc(α) = 1.

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 96 / 148



Feasible Computations: P vs. NP Natural NP-complete problems

CIRSAT: Satisfiability of Boolean Circuits (Cont.)

Practical question: “Is circuit ever 1?”
I Find unused parts of circuits (like dead code)

Formally:
I (Assume again some fixed encoding 〈c〉 of circuit c)

Definition

The circuit satisfiability problem is defined as:

CIRSAT := {〈c〉 | c is a satisfiable circuit}
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Feasible Computations: P vs. NP Natural NP-complete problems

CIRSAT: Satisfiability of Boolean Circuits (Cont. 2)

Lemma

CIRSAT is NP-complete.

Proof.

CIRSAT ∈ NP: Satisfying input is witness w
I Size N for N variables
I Verifying: Evaluating all gates is efficient

SAT ≤p
m CIRSAT: Transform formula ϕ to circuit c

Remark: Transformation circuit to equivalent formula not efficient
I Circuit can “reuse” intermediate results
I CIRSAT ≤p

m SAT anyway (SAT is NP-complete!)
I Transformation produces satisfiability equivalent formula
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Feasible Computations: P vs. NP Natural NP-complete problems

CNF: Restricted Structure of Boolean Formulas

Definition (CNF)

Let X = {x1, . . . , xN} be a set of variable names.

A literal l is either xi (variable) or ¬xi (negated variable, also xi )
A clause is a disjunction C = l1 ∨ . . . ∨ lk of literals
A boolean formula in conjunctive normal form (CNF) is a conjunction of
clauses ϕ = C1 ∧ . . . ∧ Cm

Set of all CNF formulas:

CNFBOOL :=


m∧

i=1

k(i)∨
j=1

σi ,j | σi ,j are literals


CNF formulas where the clauses contain only k literals: k-CNF

k-SAT := {〈ϕ〉 | ϕ ∈ k-CNFBOOL is satisfiable}
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Feasible Computations: P vs. NP Natural NP-complete problems

k-SAT: NP-complete for k ≥ 3

Lemma

1 1-SAT, 2-SAT ∈ P

2 3-SAT is NP-complete.

Proof (Overview).

First part: Exercise

Second part:
I 3-SAT ∈ NP clear: 3-SAT ≤p

m SAT (special case)
I Then show CIRSAT ≤p

m 3-SAT
I Given a circuit c = (g1, . . . , gm), construct a 3-CNF formula ψc

I Variables in formula: One for each input and each gate
I x1, . . . , xN for inputs of circuit
I y1, . . . , ym for gates
I Clauses (size 3) enforce values of gates
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Feasible Computations: P vs. NP Natural NP-complete problems

NP-completeness of 3-SAT

Lemma
2 3-SAT is NP-complete.

Proof (Details).

Gate gi Clause Semantics

⊥ {yi} yi = 0
> {yi} yi = 1
xj {yi , xj}, {xj , yi} yi ↔ xj

(¬, j) {yi , yj}, {yi , yj} yi ↔ yj

(∧, j , k) {yi , yj}, {yi , yk}, {yj , yk , yi} yi ↔ (yj ∧ yk)

Finally, add {ym}
All clauses together form ψc
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Feasible Computations: P vs. NP Natural NP-complete problems

NP-completeness of 3-SAT (Cont.)

Lemma
2 3-SAT is NP-complete.

Proof (Details, Cont.).

If c is satisfiable, then also ψc :
I Use assignment α of c for x1, . . . , xN

I Value f
(j)
c (α) at gate gj as value for yj

I By construction, all clauses true, thus ψc satisfied

If c not satisfiable, then neither ψc :
I fc(α) = 0 for all α
I Thus, f

(m)
c (α) always 0 (“top level gate”)

I If all clauses satisfied, ym = f
(m)
c (α), but then {ym} not satisfied

Thus, c ∈ CIRSAT ⇐⇒ ψc ∈ 3-SAT
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Feasible Computations: P vs. NP Natural NP-complete problems

Graph problems

So far: Satisfiability problems
I For boolean formulas (SAT, 3-SAT)
I For boolean circuits (CIRSAT)

Now: Graph problems
I Undirected graph: G = (V ,E )
I V are the nodes
I E ⊆

(
V
2

)
are the edges

I Efficient encoding possible (adjacency matrix or list)

Problems consider different properties of graphs
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Feasible Computations: P vs. NP Natural NP-complete problems

Independent Set Problem

First problem: Independent set problem
I Given: Undirected graph G = (V ,E ) and number k
I Question: Is there I ⊆ V such that

1 ‖I‖ = k, and
2 No two nodes in I are connected?

Formally:

Definition

The independent set problem is defined as:

INDEPSET :=

{
(G , k) | ∃I ⊆ V (G ) : ‖I‖ = k ∧

(
I

2

)
∩ E (G ) = ∅

}
Turns out: Very difficult (i.e. NP-complete)
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Feasible Computations: P vs. NP Natural NP-complete problems

INDEPSET is NP-complete

Lemma

INDEPSET is NP-complete.

Proof (Sketch).

INDEPSET ∈ NP: Set I is the witness

NP-completeness via 3-SAT ≤p
m INDEPSET:

I Given ϕ with k clauses, construct G
I Each literal is a node
I Connect literals from same clause (triangles)
I Connect complementary literals

If ϕ satisfiable:
Choose one satisfied literal in each clause for I

If G has k-independent set:
Represents a satisfying truth assignment
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Feasible Computations: P vs. NP Natural NP-complete problems

CLIQUE is NP-complete

Clique problem
I Given: Undirected graph G = (V ,E ) and number k
I Question: Is there C ⊆ V such that

1 ‖C‖ = k?
2 All nodes in C are pairwise connected (a “k-clique”)

Formally:

Definition (Clique Problem)

The clique problem is defined as:

CLIQUE :=

{
(G , k) | ∃C ⊆ V (G ) : ‖C‖ = k ∧

(
C

2

)
⊆ E

}
NP-complete! (See exercises)
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Feasible Computations: P vs. NP Natural NP-complete problems

NODECOVER is NP-complete

Node cover problem
I Given: Undirected graph G = (V ,E ) and number k
I Question: Is there N ⊆ V such that

1 ‖N‖ = k?
2 Each edge in E contains a node from N

Formally:

Definition (Node Cover Problem)

The node cover problem is defined as:

NODECOVER := {(G , k) | ∃N ⊆ V (G ) : ‖N‖ = k ∧ ∀e ∈ E (G ) : e ∩ N 6= ∅}

NP-complete! (See exercises)
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Feasible Computations: P vs. NP Natural NP-complete problems

HAMILTONPATH is NP-complete

Hamilton path problem
I Given: Undirected graph G = (V ,E )
I Question: Is there a path p = (p0, . . . , pk) in G such that:

F All nodes pi are pairwise different? (“Hamilton path”)

Formally:

Definition (Hamilton Path Problem)

The Hamilton Path Problem is defined as:

HAMILTONPATH := {G | ∃p : p is Hamilton path in G}

NP-complete!

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 108 / 148



Feasible Computations: P vs. NP Natural NP-complete problems

HITTINGSET is NP-complete

Hitting set problem
I Given:

F A set A
F A collection C = (C1, . . . Cm) of subsets of A: ∀i : Ci ⊆ A
F A number k

I Question: Is there a set H ⊆ A such that:
1 ‖H‖ = k
2 H contains an element from each Ci ∈ C (“k-hitting set”)

Not a graph problem, but related

Formally:

Definition (Hitting Set Problem)

The hitting set problem is defined as:

HITTINGSET := {(A,C , k) | ∃H ⊆ A : ‖H‖ = k ∧ ∀Ci ∈ C : H ∩ Ci 6= ∅}

NP-complete! (See exercises)
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Feasible Computations: P vs. NP Natural NP-complete problems

TSP is NP-complete

Travelling Salesman Problem
I Given:

F n cities with a distance matrix D ∈ Nn×n

F A number k
I Question: Is there a tour through all cities such that

1 Each city is visited exactly once, and
2 The distance sum of the tour is at most k?

Formally:

Definition (Travelling Salesman Problem)

The Travelling salesman problem is defined as:

TSP :=

{
(D, k) | ∃π :

n∑
i=1

D[π(i), π(i + 1)] ≤ k

}

NP-complete!
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Feasible Computations: P vs. NP Natural NP-complete problems

KNAPSACK is NP-complete

Knapsack Problem
I Given:

F n items with values V = (v1, . . . , vn) and weights W = (w1, . . . , wn)
F A lower value limit l and an upper weight limit m

I Question: Is there a selection S ⊆ [1, n] of the items, such that
1 The sum of the values is at least l , and
2 The sum of the weights is at most m?

Formally:

Definition (Knapsack problem)

The Knapsack problem is defined as:

KNAPSACK :=

{
(V ,W , l ,m) | ∃S ⊆ [1, n] :

∑
i∈S

wi ≤ l ∧
∑
i∈S

vi ≥ m

}

NP-complete!
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Feasible Computations: P vs. NP Natural NP-complete problems

ILP is NP-complete

Integer linear programming problem
I Given: n linear inequalities in n variables with integer coefficients
I Question: Is there an integer solution to that system?

Formally:

Definition (Integer Linear Programming)

The Integer linear programming problem is defined as:

ILP := {(A, b) | ∃x ∈ Zn : Ax ≤ b}

NP-complete!

Remark: Linear programming (allowing rationals) is in P!
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Feasible Computations: P vs. NP Natural NP-complete problems

BINPACK is NP-complete

Bin packing problem
I Given:

F n items with sizes A = (a1, . . . , an)
F b bins with capacity c each

I Question: Is it possible to pack the items into the bins?

Formally:

Definition (Bin Packing)

The bin packing problem is defined as:

BINPACK :=

(A, b, c) | ∃ partition S1, . . . ,Sb of [1, n] s.t. ∀i :
∑
j∈Si

aj ≤ c


NP-complete!
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Feasible Computations: P vs. NP Beyond NP-completeness

Between P and NPC

Many problems are NP-complete

Many problems are in P

Assume P 6= NP:
I Are all problems either P or NP-complete?
I No!

Lemma

If P 6= NP, then there is a language L ∈ NP−(P∪NPC).
(Without proof.)

“Too easy” for NPC, “too difficult” for P

Will see a candidate later
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Feasible Computations: P vs. NP Beyond NP-completeness

Pseudo-polynomial complexity

Precise problem formulation may make a difference
I Example: Integer linear programming
I In P without restriction to integers

Representation of problem instances may also matter:
I KNAPSACK is NP-complete
I But: Given n items and weight limit l , solve it in time O(n · l)
I Still not polynomial in input: Input size is O(n · log(l))
I l is represented binary (or other k-ary)

If polynomial in input values (not size/length): Pseudo-polynomial

Strong NP-completeness:
I NP-complete even if input values polynomially in input size
I Equivalent: Input values are given in unary
I Examples: All we saw except KNAPSACK
I Don’t have pseudo-polynomial algorithms (unless P = NP)
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Feasible Computations: P vs. NP Beyond NP-completeness

Unknown Relations

NP- and co- NP-complete problems: Regarded as “difficult”

How do they relate to each other?

I Unknown: NP
?
= co- NP

I NP 6= co- NP =⇒ P 6= co- NP, thus NP 6= co- NP stronger
I Intuition: Efficiently verifiable proofs, no efficiently verifiable disproofs

What about NP∩ co- NP?

I Unknown: P
?
( NP∩ co- NP

I Intuition: Efficiently verifiable proofs and disproofs, not efficiently
provable

“Upper end”: Also NP
?
( PSPACE unknown

I Intuition: Provable in polynomial space, but no (time-)efficiently
verifiable proofs

I Even P
?
( PSPACE unknown
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Feasible Computations: P vs. NP Beyond NP-completeness

The Problems PRIMES and GI

P 6= NP not known, thus no language proven in NP−(P∪NPC)

Former candidate: PRIMES
I Deciding primality of a number
I Efficient probabilistic methods were known
I Shown in 2002: PRIMES ∈ P

Another candidate: GI (graph isomorphism)
I Given: Two graphs G1 and G2

I Question: Are they isomorphic?

GI := {(G1,G2) | ∃π : (e ∈ E (G1) ⇐⇒ π(e) ∈ E (G2))}

I Isomorphism: Graphs “look the same” (same structure)
I High practical relevance
I Many approximations, but no exact complexity known
I Own complexity class GI: Everything reducible to GI
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Advanced Complexity Concepts Non-uniform Complexity

Uniform vs. Non-uniform Models

Turing Machine: One fixed (finite) machine for all input sizes

“One size fits it all” approach, uniform model

Some situations: More hardwired information when size grows
I Cryptography: Precomputed tables for different key sizes
I Want to model such attackers

Model this non-uniform notion using advice:
I Machine gets advice string an in addition to input
I One fixed string an for each input size n
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Advanced Complexity Concepts Non-uniform Complexity

Turing Machine with Advice

Definition (Turing Machine with Advice)

A Turing machine with advice is a 6-tuple M = (Q, Γ, δ, q0,F ,A)
with Q, Γ, δ, q0,F as before and A = {an}n≥0

The set a A is called the advice.

Language accepted by M:

L(M) := {x ∈ Σ∗ | ∃y , z ∈ Γ∗ : (ε, q0, x#a|x |) `∗ (y , qyes , z)

(Separation symbol # ∈ Γ)
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Advanced Complexity Concepts Non-uniform Complexity

Turing Machine with Advice: Remarks

Classical Turing machine: Finite object

Advice: Infinite object, external information to machine

Difference to witness from NP:
I Witness was different for each input, a specific proof
I Only for the positive instances x ∈ L(M)
I Advice is for each input size, a static computational “aid”
I Fixed, the same an for each x of length n

Very powerful without restrictions:
I Any language L (even undecidable!) could be decided
I Encode into an a large table with all words Σn

I For each word x a bit: x ∈ L or x /∈ L
I Machine can look up in table

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 122 / 148



Advanced Complexity Concepts Non-uniform Complexity

Restricting the Advice: P/poly

Restrict now advice polynomially

Definition

P/poly is the set of all languages L such that:

1 L is decided by a TM M with advice A exists, and

2 ∀n : |an| ≤ p(n) for some polynomial p(n).

Clear: P ⊆ P/poly (just ignore the advice)

Thus: If ∃L ∈ NP with L /∈ P/poly then P 6= NP!

Difficulty: P/poly is powerful, contains still undecidable languages
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Advanced Complexity Concepts Non-uniform Complexity

P/poly and Undecidability

Lemma

P/poly contains undecidable problems.

Proof.

First: There are unary undecidable languages
I Encode H using one-symbol alphabet

Second: All unary languages are in P/poly
I For each size n, there is only one instance xn

I Set an = 1 if it is positive (xn ∈ L)
I Set an = 0 if it is negative (xn /∈ L)

However, under reasonable assumptions: NP−P/poly = ∅
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Advanced Complexity Concepts Non-uniform Complexity

Circuit Characterization of Non-uniformity

Defined P/poly using advice

Alternative: Use circuits

Recall: Circuit Cn

I Gets input string α ∈ {0, 1}n, and
I Produces output bit fc(α)
I Defines an accepted language:

L(Cn) := {α ∈ {0, 1}n | fCn(α) = 1}
Works only with fixed instance size

I Thus extend to circuit family C = {Cn}n≥0:

L(C ) := {α ∈ L(C|α|)}

Non-uniformity: New device for each input size

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 125 / 148



Advanced Complexity Concepts Non-uniform Complexity

Circuit Size

Circuit family may have a non-finite representation (like advice)

Very powerful without restrictions (like advice)

Resource bound : size(Cn)
I Defined via number of gates
I Creates language class:

DSIZE(s(n)) := {L(C ) | ∀n ≥ 0 : size(Cn) ≤ s(n)}

TM can be simulated with quadratic circuit size:

Lemma

DTIME(t(n)) ⊆ DSIZE(O(t(n)2)) (Without proof.)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 126 / 148



Advanced Complexity Concepts Non-uniform Complexity

Circuit Characterization of P/poly

Lemma

P/poly = DSIZE(nO(1))

Proof.

First: Let L ∈ P/poly by a TM M with advice A
I For each n, construct circuit Cn simulating M on Σn

I an is only polynomially big, can be hardwired
I Thus: L ∈ DSIZE(nO(1))

Second: Let L ∈ DSIZE(nO(1)) via circuit family C
I Use a TM for evaluating circuits
I Advice A is the (encoded) circuit family C
I Thus: L ∈ P/poly
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Advanced Complexity Concepts Probabilistic Complexity Classes

Probabilistic Computation

Models so far: Had exactly one outcome
I Classical deterministic Turing machine
I Non-determinism with witness characterization
I Circuits

Relax this requirement: Introduce “coin-tosses”
I At each step, machine can choose different next steps
I Does so with a certain probability
I Introduces uncertainty: Same input, different answers

Produces still useful results if low error probability
I Cryptography: Attacker may be happy to succeed 1% of the time

Produces still useful results if low error probability

Syntactically the same as non-deterministic machine, but:
I Non-deterministic model: Theoretic model, implicit “∃” quantification
I Randomized model: Practical model, may be executed directly
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Advanced Complexity Concepts Probabilistic Complexity Classes

Notation

For L ⊆ Σ∗ let χL : Σ∗ → {0, 1}:

χL(x) :=

{
1 if x ∈ L

0 if x /∈ L

χL is the characteristic function of L

Assume from now on:
I M outputs 1 for “accept”
I M outputs 0 for “reject”
I Thus, only qhalt instead of qyes and qno

Allows expressions like “M(x) = χL(x)”

“Coin tosses” r ∈ {0, 1}∗ as a second argument: M(x , r)
I Notation of probability: Probr [M(x , r) = 1]
I If M probabilistic, then r implicit: Prob[M(x) = 1]
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Advanced Complexity Concepts Probabilistic Complexity Classes

One-sided Error: The class RP

Didn’t define accepted languages yet

First type: One-sided error
I Positive instances may be judged wrong (output 0 or 1)
I Negative instances are always correct (output 0)

Definition

RP is the class of all L for which a polynomially time-bounded,
probabilistic TM M exists, such that:

x ∈ L =⇒ Prob[M(x) = 1] ≥ 1/2

x /∈ L =⇒ Prob[M(x) = 1] = 0

Symmetric behaviour: co- RP (always correct for x ∈ L)
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Advanced Complexity Concepts Probabilistic Complexity Classes

P and NP vs. RP

Clear: P ⊆ RP (Machine is always correct, no coin tosses)

RP ⊆ NP:
I RP: For x ∈ L, at least half the paths lead to 1
I NP: For x ∈ L, at least one path leads to 1
I Both produce 0 for all runs on x /∈ L

Or, using the witness-based characterization of NP:

NP RP

x ∈ L: ∃w : (x ,w) ∈ RL Probr [(x , r) ∈ RL] ≥ 1/2
x /∈ L: ∀w : (x ,w) /∈ RL ∀r : (x , r) /∈ RL
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Advanced Complexity Concepts Probabilistic Complexity Classes

Error Bound Robustness

Positive instances: Error probability 1/2
Assume: Error probability 2/3
Can be reduced to 1/2:

I Run the machine twice
I Accept, if one of the runs accepted
I For x /∈ L: Still never acceptance
I For x ∈ L: Error probability (2/3)2 = 4/9 < 1/2

In general, using more runs:

Lemma

If there is a polynomially time-bounded probabilistic TM M for L
and a polynomial p(n) such that:

x ∈ L =⇒ Prob[M(x) = 1] ≥ 1/p(|x |)
x /∈ L =⇒ Prob[M(x) = 1] = 0

Then L ∈ RP. (Without proof.)
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Advanced Complexity Concepts Probabilistic Complexity Classes

RP: Error Bound Robustness

Seen: Very low acceptance ratio is “boosted” to 1/2
Can “boost” even further, very close to 1 (“almost always”):

Lemma

For each L ∈ RP and each polynomial p(n),
there is a polynomially time-bounded probabilistic TM M such that:

x ∈ L =⇒ Prob[M(x) = 1] ≥ 1− 2−p(|x |)

x /∈ L =⇒ Prob[M(x) = 1] = 0

(Without proof.)

Thus, two equivalent characterizations:
1 Very weak (1/p(|x |) bound) for proof obligations
2 Very strong (1− 2−p(|x|) bound) for proof assumptions
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Advanced Complexity Concepts Probabilistic Complexity Classes

Two-sided Error: The class BPP

Now allow errors for positive and negative instances

Definition

BPP is the class of all L for which a polynomially time-bounded,
probabilistic TM M exists, such that:

∀x ∈ L : Prob[M(x) = χL(x)] ≥ 2/3

Notation from before:

x ∈ L =⇒ Prob[M(x) = 1] ≥ 2/3

x /∈ L =⇒ Prob[M(x) = 1] < 1/3

Symmetric definition: BPP = co- BPP

Definition is again quite robust, regarding the 2/3
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Advanced Complexity Concepts Probabilistic Complexity Classes

BPP: Error Bound Robustness

Lemma (Weak characterization of BPP)

If there is a polynomially time-bounded probabilistic TM M for L,
a polynomial p(n) and a computable function f (n) such that:

x ∈ L =⇒ Prob[M(x) = 1] ≥ f (|x |) + 1/p(|x |)
x /∈ L =⇒ Prob[M(x) = 1] < f (|x |)− 1/p(|x |)

Then L ∈ BPP. (Without proof.)

Lemma (Strong characterization of BPP)

For each L ∈ BPP and each polynomial p(n),
there is a polynomially time-bounded probabilistic TM M such that:

∀x ∈ L : Prob[M(x) = χL(x)] ≥ 1− 2−p(|x |)

(Without proof.)
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Advanced Complexity Concepts Probabilistic Complexity Classes

Relations of BPP

Clearly RP ⊆ BPP (no error for x /∈ L with RP)

Unknown relation between BPP and NP

Note: Error rate can be made exponentially small

“Efficient computation” nowadays often characterized with BPP
I In fact, P = BPP is a popular conjecture
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Advanced Complexity Concepts Probabilistic Complexity Classes

Monte Carlo vs. Las Vegas

Described machines always answer, sometimes wrong
I Monte Carlo Algorithms

Contrast: Always answer right, but sometimes with “I don’t know”
I Las Vegas Algorithms

Denote “I don’t know” with “⊥”

Definition

ZPP is the class of all L for which a polynomially time-bounded,
probabilistic TM M exists, such that:

I ∀x ∈ L : Prob[M(x) = ⊥] ≤ 1/2, and

I ∀x ∈ L, r : M(x , r) 6= ⊥ =⇒ M(x , r) = χL(x)
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Advanced Complexity Concepts Probabilistic Complexity Classes

More Class Relationships

Lemma
1 P ⊆ ZPP ⊆ RP ⊆ BPP

2 ZPP = RP∩ co- RP

3 BPP ⊆ P/poly

4 BPP = P if pseudo random number generators exist.
(Efficient derandomization)

(Without proof.)

Pseudo random number generators (PRNGs) output looks random
I No observer can tell the difference
I No observer can predict the next bit
I PRNGs exist under certain (sophisticated) assumptions
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Advanced Complexity Concepts Interactive Proof Systems

Intuitive Notion of a Proof

Proof: Prover and Verifier

Prover convinces verifier of validity of some assertion

In mathematics:
I Prover writes down a list of steps
I Verifier checks each step

In general:
I Interaction between the parties
I Verifier asks questions (possibly adaptively)
I Prover answers them

Careful verifier is only convinced of valid assertions
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Advanced Complexity Concepts Interactive Proof Systems

Formalizing the Notion of a Proof

Interpret NP as non-interactive proofs:
I Supplied witness is the proof
I Machine checking it is the verifier, working efficiently
I Only true assertions (“x ∈ L”) have a proof
I “NP proof system”

General notion with similar properties:
1 Efficiency of the verifier
2 Correctness requirement:

Completeness: Each true assertion has a convincing proof strategy
Soundness: No false assertion has a convincing proof strategy

Will use Interactive Turing Machines for that
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Advanced Complexity Concepts Interactive Proof Systems

Interactive Turing Machine (ITM)

Like ordinary Turing machine, but with
I Communication tape and
I Two communication states q? and q!

Operation of two composed machines 〈M1,M2〉:
I M1 starts in q0, M2 waits in q?

I M1 runs, writes message on shared communication tape
I M1 switches to q?, M2 switches to q!

I M2 runs, M1 waits
I .. And so on, back and forth ..
I Finally, M2 stops

Period between control switches: A round

Output: Tape contents of M2 after halting
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Advanced Complexity Concepts Interactive Proof Systems

Interactive Proof System

Definition (Interactive Proof System)

An interactive proof system for L is a pair 〈P,V 〉 of ITMs with:

1 V is probabilistic and polynomially time-bounded.

2 Correctness requirement:

Completeness: ∀x ∈ L : Prob[〈P,V 〉(x) = 1] ≥ 2/3
Soundness: ∀x /∈ L : ∀P∗ : Prob[〈P∗,V 〉(x) = 1] < 1/3

Correctness is probabilistic

Bounds:
I Verifier is bounded
I Prover is not bounded

Soundness is against all provers (incl. very bad ones)

Useful model for cryptographic protocols
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Advanced Complexity Concepts Interactive Proof Systems

IP hierarchy

Definition (IP hierarchy)

Let r : N→ N.

IP(r(n)) contains all L for with interactive proof systems 〈P,V 〉
such that on common input x , at most r(|x |) rounds are used.

IP contains all L having interactive proof systems:

IP :=
⋃
r

IP(r(n))
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Advanced Complexity Concepts Interactive Proof Systems

Properties of IP

Clearly NP ⊆ IP:
I Just one round
I Prover just writes witness
I Verifier checks it (even deterministically)
I Thus, interaction necessary to gain expressiveness

Also randomness necessary:
I Let 〈P,V 〉 without random choices
I P always knows exactly answer of V
I Thus: Doesn’t need to ask, can calculate answer itself
I Therefore, only one final message needed
I This is an NP proof system!

Further: IP = IP(nO(1))
I V can only do polynomially many steps
I Thus: Number of rounds polynomially bounded
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Advanced Complexity Concepts Interactive Proof Systems

IP: Error Bound Robustness

As for BPP, bounds can be minimized:

Lemma

For each L ∈ IP and each polynomial p(n), there is
an interactive proof system 〈P,V 〉 with strong correctness properties:

Completeness: ∀x ∈ L : Prob[〈P,V 〉(x) = 1] ≥ 1− 2−p(|x |)

Soundness: ∀x /∈ L : ∀P∗ : Prob[〈P∗,V 〉(x) = 1] < 2−p(|x |)

(Without proof.)

Price for that:
I Increased number of rounds (serial repetitions), or
I Increased message sizes (parallel repetitions)
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Advanced Complexity Concepts Interactive Proof Systems

Example: Graph Non-Isomorphism

Theorem

GNI := GI ∈ IP.

Proof (Sketch).

Given G1,G2, show they are not isomorphic
Idea:

I “Shuffle” one of them
I Only possible to find which one it was, if G1,G2 not isomorphic

Thus, protocol:
I V chooses i ∈ {1, 2} and permutation π
I V sends H := π(Gi )
I P finds j such that Gj is isomorphic to H, sends j
I V checks whether i = j

If (G1,G2) ∈ GNI, P can find correct j (P is unbounded!)
If (G1,G2) /∈ GNI, P can only guess and fails with 50% chance
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Advanced Complexity Concepts Interactive Proof Systems

IP: More properties

Note: Protocol was just two rounds, GNI ∈ IP(2)

GNI ∈ co- NP, not known whether in P or NP

Indeed, IP is quite strong:

Theorem

1 (NP∪ co- NP) ⊆ IP

2 IP = PSPACE (Without proof.)

Interesting extension: Zero knowledge proof systems
I Verifier does not gain knowledge
I Needs definition of “knowledge”:

Information that can not be efficiently computed
I Used for secrecy properties in cryptography
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Advanced Complexity Concepts Interactive Proof Systems
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