
Introduction to Computational Complexity
A 10-lectures Graduate Course

Martin Stigge, martin.stigge@it.uu.se

Uppsala University, Sweden

13.7. - 17.7.2009

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 1 / 148

Introduction

Administrative Meta-Information

5-Day course, Monday (13.7.) to Friday (17.7.)

Schedule:

Mon (13.7.): 10:00 - 12:00, 16:30 - 18:30
Tue (14.7.): 10:00 - 12:00, 14:00 - 16:00

Wed (15.7.): 10:00 - 12:00, 14:00 - 16:00
Thu (16.7.): 10:00 - 12:00, 14:00 - 16:00

Fri (17.7.): 10:00 - 12:00, 16:30 - 18:30

Lecture notes avaiable at:

http://www.it.uu.se/katalog/marst984/cc-st09

Some small assignments at end of day

Course credits: ??

Course is interactive, so:

Any questions so far?

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 2 / 148

http://www.it.uu.se/katalog/marst984/cc-st09

Introduction

What is Computational Complexity?

Studies intrinsic complexity of computational tasks

Absolute Questions:
I How much time is needed to perform the task?
I How much resources will be needed?

Relative Questions:
I More difficult than other tasks?
I Are there “most difficult” tasks?

(Surprisingly: Many relative answers, only few absolute ones..)

Rigorous treatment:
I Mathematical formalisms, minimize “hand-waving”
I Precise definitions
I Theorems have to be proved

After all: Complexity Theory

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 3 / 148

Introduction

What is Computational Complexity? (Cont.)

Basis: Computability Theory
I Provides models of computation
I Explores their strength (expressiveness)
I Question: “What can be computed (at all)?”

Then: Complexity Theory
I Tries to find meaningful complexity measures
I Tries to classify and relate problems
I Tries to find upper and lower complexity bounds
I Question: “What can efficiently be computed?”

One core concern:
I What does “efficiently” actually mean?

I Proving vs. Verifying (P
?
= NP problem)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 4 / 148

Introduction

Course Outline

0 Introduction

1 Basic Computability Theory
Formal Languages
Model of Computation: Turing Machines
Decidability, Undecidability, Semi-Decidability

2 Complexity Classes
Landau Symbols: The O(·) Notation
Time and Space Complexity
Relations between Complexity Classes

3 Feasible Computations: P vs. NP
Proving vs. Verifying
Reductions, Hardness, Completeness
Natural NP-complete problems

4 Advanced Complexity Concepts
Non-uniform Complexity
Probabilistic Complexity Classes
Interactive Proof Systems

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 5 / 148

This is a theoretical course
– expect a lot of “math”!

Basic Computability Theory Formal Languages

Problems as Formal Languages

Start with very high-level model of computation

Assume a machine with input and output

Formal notation for format:
I Σ = {σ1, . . . , σk} is a finite set of symbols
I w = (w1, . . . ,wl) is a word over Σ: ∀i : wi ∈ Σ

F Write also just w1w2 . . . wl

I l is the length of w , also denoted |w |
I ε is the empty word , i.e., |ε| = 0
I Σk is the set of words of length k
I Σ∗ =

⋃
k≥0 Σk are all words over Σ

I A language is a set L ⊆ Σ∗

I Let L1, L2 ⊆ Σ∗, language operations:
F L1 ∪ L2 (union), L1 ∩ L2 (intersection), L1 − L2 (difference)
F L := Σ∗ − L (complement)
F L1L2 := {w | ∃w1 ∈ L1, w2 ∈ L2 : w = w1w2} (concatenation)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 6 / 148

Basic Computability Theory Formal Languages

Problems as Formal Languages (Example)

Example: NAT

Let Σ := {0, 1, . . . , 9}
Σ∗ is all strings with digits

Let [n]10 denote decimal representation of n ∈ N
NAT := {[n]10 | n ∈ N} (Σ∗ all representations of naturals

I 010 ∈ Σ∗ − NAT

Machine for calculating square:

Input: w = [n]10 ∈ Σ∗

Output: v ∈ Σ∗ with v = [n2]10

(Plus error-handling for w /∈ NAT)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 7 / 148

Basic Computability Theory Formal Languages

Problems as Formal Languages (2nd Example)

Example: PRIMES

Let Σ := {0, 1, . . . , 9} and NAT as before

PRIMES := {[p]10 | p is a prime number}
Clearly: PRIMES (NAT

Machine M for checking primality:

Input: w = [n]10 ∈ Σ∗

Output: 1 if n is prime, 0 otherwise

This is a decision problem:
I PRIMES are the positive instances,
I Σ∗ − PRIMES (everything else) the negative instances
I M has to distinguish both (it decides PRIMES)

Important concept, will come back to that later!

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 8 / 148

Basic Computability Theory Model of Computation: Turing Machines

Model of Computation

Input/Output format defined. What else?

Model of Computation should:
I Define what we mean with “computation”, “actions”, ...
I Be simple and easy to use
I ... but yet powerful

Models: Recursive Functions, Rewriting Systems, Turing Machines, ...

All equally powerful:

Church’s Thesis

All “solvable” problems can be solved by any of the above formalisms.

We will focus on the Turing Machine.

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 9 / 148

Basic Computability Theory Model of Computation: Turing Machines

Turing Machine

Turing Machines are like simplified computers containing:
I A tape to read/write on

F Contains squares with one symbol each
F Is used for input, output and temporary storage
F Unbounded

I A read/write head
F Can change the symbol on the tape at current position
F Moves step by step in either direction

I A finite state machine
F Including an initial state and final states

Looks simple, but is very powerful

Standard model for the rest of the course

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 10 / 148

Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Definition

Definition (Turing Machine)

A Turing machine M is a five-tuple M = (Q, Γ, δ, q0,F) where

Q is a finite set of states;
Γ is the tape alphabet including the blank: 2 ∈ Γ;

q0 is the initial state, q0 ∈ Q;
F is the set of final states, F ⊆ Q;
δ is the transition function, δ : (Q − F)× Γ→ Q × Γ× {R,N, L}.

Operation:

Start in state q0, input w is on tape, head over its first symbol
Each step:

I Read current state q and symbol a at current position
I Lookup δ(q, a) = (p, b,D)
I Change to state p, write b, move according to D

Stop as soon as q ∈ F . Left on tape: Output

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 11 / 148

Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Configuration

Configuration (w , q, v) denotes status after each step:
I Tape contains wv (with infinitely many 2 around)
I Head is over first symbol of v
I Machine is in state q

Start configuration: (ε, q0,w) if input is w

End configuration: (v , q, z) for a q ∈ F
I Output is z , denoted by M(w)
I In case machine doesn’t halt (!): M(w) =↗

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 12 / 148

Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Step Relation

Step relation: Formalizes semantics of Turing machine

Definition (Step Relation)

Let M = (Q, Γ, δ, q0,F), define ` for all w , v ∈ Γ∗, a, b ∈ Γ and q ∈ Q as:

(wa, q, bv) `

(wac , p, v) if δ(q, b) = (p, c,R),

(wa, p, cv) if δ(q, b) = (p, c,N),

(w , p, acv) if δ(q, b) = (p, c, L).

α reaches β in 1 step: α ` β
α reaches β in k steps: α `k β

α reaches β in any number of steps: α `∗ β

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 13 / 148

Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: The Universal Machine

Turing machine model is quite simple

Can be easily simulated by a human
I Provided enough pencils, tape space and patience

Important result: Machines can simulate machines
I Turing machines are finite objects!
I Effective encoding into words over an alphabet
I Also configurations are finite! Encode them also

Simulator machine U only needs to
I Receive an encoded M as input
I Input of M is w , give that also to U
I U maintains encoded configurations of M and applies steps

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 14 / 148

Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: The Universal Machine (Cont.)

Let 〈M〉 be encoding of machine M.

Theorem (The Universal Machine)

There exists a universal Turing machine U, such that for all Turing
machines M and all words w ∈ Σ∗:

U(〈M〉,w) = M(w)

In particular, U does not halt iff 1 M does not halt.
(Without proof.)

1“if and only if”
Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 15 / 148

Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Transducers and Acceptors

Definition so far: Receive input, compute output
We call this a transducer :

I Interpret a TM M as a function f : Σ∗ → Σ∗

I All such f are called computable functions
I Partial functions may be undefined for some inputs w

F In case M does not halt for them (M(w) =↗)
I Total functions are defined for all inputs

For decision problems L: Only want a positive or negative answer
We call this an acceptor :

I Interpret M as halting in
F Either state qyes for positive instances w ∈ L
F Or in state qno for negative instances w /∈ L

I Output does not matter, only final state
I M accepts the language L(M):

L(M) := {w ∈ Σ∗ | ∃y , z ∈ Γ∗ : (ε, q0,w) `∗ (y , qyes , z)}

Rest of the course: Mostly acceptors

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 16 / 148

Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Multiple Tapes

Definition so far: Machine uses one tape

More convenient to have k tapes (k is a constant)
I As dedicated input/output tapes
I To save intermediate results
I To precisely measure used space (except input/output space)

Define this as k-tape Turing machines
I Still only one state, but k heads
I Equivalent to 1-tape TM in terms of expressiveness

(Encode a “column” into one square)
I Could be more efficient, but not much

Rest of the course: k-tape TM with dedicated input/output tapes

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 17 / 148

Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Non-determinism

Definition so far: Machine is deterministic
I Exactly one next step possible

Extension: Allow different possible steps

δ : (Q − F)× Γ→ P(Q × Γ× {R,N, L})

Machine chooses non-deterministically which step to do
I Useful to model uncertainty in a system
I Imagine behaviour as a computation tree
I Each path is one possible computation
I Accepts w iff there is a path to qyes (accepting path)

Not a real machine, rather a theoretical model

Will see another characterization later

Expressiveness does not increase in general (see following Theorem)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 18 / 148

Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Non-determinism (Cont.)

Theorem

Given a non-deterministic TM N, one can construct a deterministic TM M
with L(M) = L(N).
Further, if N(w) accepts after t(w) steps, then there is c such that M(w)
accepts after at most ct(w) steps.

Remark

Exponential blowup concerning speed

Ignoring speed, expressiveness is the same

Note that N might not terminate on certain inputs

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 19 / 148

Basic Computability Theory Model of Computation: Turing Machines

Turing Machine: Non-determinism (Cont. 2)

Proof (Sketch).

Given a non-deterministic N and an input w

Search the computation tree of N

Breadth-first technique: Visit all “early” configurations first
I Since there may be infinite paths
I For each i ≥ 0, visit all configurations up to depth i
I If N accepts w , we will find accepting configuration at a depth t and

halt in qyes

I If N rejects w , we halt in qno or don’t terminate

Let d be maximal degree of non-determinism (choices of δ)

Above takes at most
∑t

i=0 d i steps

Can be bounded from above by ct with a suitable constant c

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 20 / 148

Basic Computability Theory Model of Computation: Turing Machines

Summary (Turing Machine)

Simple model of computation, but powerful

Clearly defined syntax and semantics

May accept languages or compute functions

May use multiple tapes

Non-determinism does not increase expressiveness

A Universal Machine exists, simulating all other machines

Remark

The machines we use from now on

are deterministic

are acceptors,

with k tapes

(except stated otherwise).

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 21 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Deciding a Problem

Recall: Turing Machines running with input w may
I halt in state qyes ,
I halt in state qno , or
I run without halting .

Given problem L and instance w , want to decide whether w ∈ L:
I Using a machine M
I If w ∈ L, M should halt in qyes

I If w /∈ L, M should halt in qno

In particular: Always terminate! (Little use otherwise...)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 22 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Decidability and Undecidability

Definition

L is called decidable, if there exists a TM M with L(M) = L that
halts on all inputs.
REC is the set of all decidable languages.

We can decide the status of w by just running M(w).

Termination guaranteed, we won’t wait infinitely

“M decides L”

If L /∈ REC, then L is undecidable

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 23 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Decidability and Undecidability: Example

Example (PRIMES ∈ REC)

Recall PRIMES := {[p]10 | p is a prime number}
Can be decided:

I Given w = [n]10 for some n
I Check for all i ∈ (1, n) whether n is multiple of i
I If an i found: Halt in qno

I Otherwise, if all i negative: Halt in qyes

Can be implemented with a Turing machine

Always terminates (only finitely many i)

Thus: PRIMES ∈ REC

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 24 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Semi-Decidability

Definition

L is called semi-decidable, if there exists a TM M with L(M) = L.
RE is the set of all semi-decidable languages.

Note the missing “halts on all inputs”!

We can only “half-decide” the status of a given w :
I Run M, wait for answer
I If w ∈ L, M will halt in qyes

I If w /∈ L, M may not halt
I We don’t know: w /∈ L or too impatient?

“M semi-decides L”

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 25 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Class Differences

Questions at this point:
1 Are there undecidable problems?
2 Can we at least semi-decide some of them?
3 Are there any we can’t even semi-decide?

Formally: REC
?
(RE

?
(P(Σ∗)

Subtle difference between REC and RE: Termination guarantee

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 26 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Properties of Complementation

Theorem

1 L ∈ REC ⇐⇒ L ∈ REC. (“closed under taking complements”)

2 L ∈ REC ⇐⇒ (L ∈ RE∧L ∈ RE).

Proof (First part).

Direction “=⇒”:
I Assume M decides L and halts always
I Construct M ′: Like M, but swap qyes and qno

I M ′ decides L and halts always!

Direction “⇐=”:
I Exact same thing.

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 27 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Properties of Complementation

Theorem

1 L ∈ REC ⇐⇒ L ∈ REC. (“closed under taking complements”)

2 L ∈ REC ⇐⇒ (L ∈ RE∧L ∈ RE).

Proof (Second part).

Direction “=⇒”:
I Follows from REC ⊆ RE and first part

Direction “⇐=”:
I Let M1,M2 with L(M1) = L and L(M2) = L
I Given w , simulate M1(w) and M2(w) step by step, in turns
I Eventually one of them will halt in qyes

I If it was M1, halt in qyes

I It it was M2, halt in qno

I Thus, we always halt (and decide L)!

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 28 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

The Halting Problem

Approach our three questions:
1 Are there undecidable problems?
2 Can we at least semi-decide some of them?
3 Are there any we can’t even semi-decide?

Classical problem: Halting Problem
I Given a program M (Turing machine!) and an input w
I Will M(w) terminate?
I Natural problem of great practical importance

Formally: Let 〈M〉 be an encoding of M

Definition (Halting Problem)

H is the set of all Turing machine encodings 〈M〉 and words w ,
such that M halts on input w :

H := {(〈M〉,w) | M(w) 6=↗}

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 29 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Undecidability of the Halting Problem

Theorem

H ∈ RE−REC

Proof (First part).

We show H ∈ RE:

Need to show: There is a TM M ′, such that
I Given M and w
I If M(w) halts, M ′ accepts (halts in qyes)
I If M(w) doesn’t halt, M ′ halts in qno or doesn’t halt

Construct M ′: Just simulate M(w)
I If simulation halts, accept (i.e. halt in qyes)
I If simulation doesn’t halt, we also won’t

Thus: L(M ′) = H

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 30 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Undecidability of the Halting Problem (Cont.)

Theorem

H ∈ RE−REC

Proof (Second part).

We show H /∈ REC:

Need to show: There is no TM MH , such that
I Given M and w
I If M(w) halts, MH accepts (halts in qyes)
I If M(w) doesn’t halt, MH rejects (halts in qno)
I Note: MH always halts!

We can’t use simulation!
I What if it doesn’t halt?

New approach: Indirect proof
I Assume there is MH with above properties
I Show a contradiction

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 31 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Undecidability of the Halting Problem (Cont. 2)

Theorem

H ∈ RE−REC

Proof (Second part, cont.)

We show H /∈ REC: Assume there is MH that always halts

Build another machine N:
I On input w , simulate MH(w ,w)
I If simulation halts in qyes , enter infinite loop
I If simulation halts in qno , accept (i.e. halt in qyes)

N is Turing machine and 〈N〉 its encoding. Does N(〈N〉) halt?
Assume “yes, N(〈N〉) halts”:

I By construction of N, MH(〈N〉, 〈N〉) halted in qno

I Definition of H: N(〈N〉) does not halt. Contradiction!

Assume “no, N(〈N〉) doesn’t halt”:
I By construction of N, MH(〈N〉, 〈N〉) halted in qyes

I Definition of H: N(〈N〉) does halt. Contradiction!

N can not exist! =⇒ MH can not exist.

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 32 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Class Differences: Results

Know now: H ∈ RE−REC, thus: REC (RE

What about RE and P(Σ∗)?
I Is there an L ⊆ Σ∗ that’s not even semi-decidable?

Counting argument:
I RE is countably infinite: Enumerate all Turing machines
I P(Σ∗) is uncountably infinite: Σ∗ is countably infinite

Corollary

REC (RE (P(Σ∗)

Remark

Actually, we even know one of those languages: H /∈ RE

Otherwise, H would be decidable: (H ∈ RE∧H ∈ RE) =⇒ H ∈ REC

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 33 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Reductions

We saw: Some problems are harder than others

Possible to compare them directly?

Concept for this: Reductions
I Given problems A and B
I Assume we know how to solve A using B
I Then: Sufficient to find out how to solve B for solving A
I We reduced A to B
I Consequence: A is “easier” than B

Different formal concept established
I Differ in how B is used when solving A
I We use Many-one reductions

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 34 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Reductions: Definition

Definition (Many-one Reduction)

A ⊆ Σ∗ is many-one reducible to B ⊆ Σ∗ (A ≤m B),
if there is f : Σ∗ → Σ∗ (computable and total), such that

∀w ∈ Σ∗ : w ∈ A ⇐⇒ f (w) ∈ B

f the reduction function.

f maps positive to positive instances, negative to negative

Impact on decidability:
I Given problems A and B with A ≤m B
I And given Mf calculating reduction f
I And given MB deciding B
I Decide A by simulating Mf and on its output MB

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 35 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Reductions: Properties

Lemma

For all A,B and C the following hold:

1 A ≤m B ∧ B ∈ REC =⇒ A ∈ REC (Closedness of REC under ≤m)

2 A ≤m B ∧ B ∈ RE =⇒ A ∈ RE (Closedness of RE under ≤m)

3 A ≤m B ∧ B ≤m C =⇒ A ≤m C (Transitivity of ≤m)

4 A ≤m B ⇐⇒ A ≤m B

Proof.

First two: We just discussed this

Second two: Easy exercise

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 36 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Reductions: Example

Example (The Problems)

Need to introduce two problems: REACH and REG-EMPTY

First Problem: The reachability problem:

REACH := {(G , u, v) | there is a path from u to v in G}

I G is a finite directed graph; u, v are nodes in G
I Question: “Is v reachable from u?”
I Easily solvable using standard breath first search: REACH ∈ REC

Second Problem: Emptiness problem for regular languages

REG-EMPTY := {〈D〉 | L(D) = ∅}

I D encodes a Deterministic Finite Automaton
I Question: “Is the language D accepts empty?”

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 37 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Reductions: Example (Cont.)

Example (The Reduction)

Will reduce REG-EMPTY to REACH

Idea: Interpret DFA D as a graph
I Is a final state reachable from initial state?
I Thus: Start node u is initial state
I Problem: Want just one target node v , but many final states possible
I Solution: Additional node v with edges from final states

Result: f with 〈D〉 7→ (G , u, v)

L(D) empty ⇐⇒ u can not reach v

Thus: REG-EMPTY ≤m REACH

Remark: Implies REG-EMPTY ∈ REC
(Closedness of REC under complement!)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 38 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

A Second Example: Halting Problem with empty input

Lemma

The Halting Problem with empty input is undecidable, i.e.:

Hε := {〈M〉 | M(ε) 6=↗} /∈ REC

Proof.

Already know: H /∈ REC
Sufficient to find a reduction H ≤m Hε (Closedness!)
Given is (〈M〉,w): A machine M with input w
Idea: Encode w into the states
Construct a new machine M ′:

1 Ignore input and write w on tape (is encoded in states of M ′)
2 Simulate M

f : (〈M〉,w) 7→ 〈M ′〉 is computable: Simple syntactical manipulations!
Reduction property by construction:

I If (〈M〉,w) ∈ H, then M ′ terminates with all inputs (also with empty input)
I If (〈M〉,w) /∈ H, then M ′ doesn’t ever terminate (also not with empty input)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 39 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Rice’s Theorem: Introduction

We know now: Halting is undecidable for Turing machines

Even for just empty input!

Are other properties undecidable?

(Maybe halting is just a strange property..)

Will see now: No “non-trivial” behavioural property is decidable!
I For Turing machines
I Simpler models behave better (DFA..)
I Non-trivial: Some Turing machines have it, some don’t

High practical relevance:
I Either have to restrict model (less expressive)
I Or only approximate answers (less precise)

Formally: Rice’s Theorem

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 40 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Rice’s Theorem: Formal formulation

Theorem (Rice’s Theorem)

Let C be a non-trivial class of semi-decidable languages, i.e., ∅ (C (RE.
Then the following LC is undecidable:

LC := {〈M〉 | L(M) ∈ C}

Proof (Overview).

First assume ∅ /∈ C
Then there must be a non-empty A ∈ C (since C is non-empty)
We will reduce H to LC
Idea:

I We are given M with input w
I Simulate M(w)
I If it halts, we will semi-decide A
I If it doesn’t halt, we will semi-decide ∅ (never accept)
I This is the reduction!

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 41 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Rice’s Theorem: Formal formulation (Cont.)

Theorem (Rice’s Theorem)

Let C be a non-trivial class of semi-decidable languages, i.e., ∅ (C (RE.
Then the following LC is undecidable:

LC := {〈M〉 | L(M) ∈ C}

Proof (Details).

Recall: ∅ /∈ C, A ∈ C, let MA be machine for A
Construct a new machine M ′:

1 Input y , first simulate M(w) on second tape
2 If M(w) halts, simulate MA(y)

Reduction property by construction:
I If (〈M〉,w) ∈ H, then L(M ′) = A, thus 〈M ′〉 ∈ LC
I If (〈M〉,w) /∈ H, then L(M ′) = ∅, thus 〈M ′〉 /∈ LC

What about the case ∅ ∈ C? Similar construction showing H ≤m LC

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 42 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Rice’s Theorem: Examples

Example

The following language is undecidable:

L := {〈M〉 | L(M) contains at most 5 words}

Follows from Rice’s Theorem since C 6= ∅ and C 6= RE

Thus: For any k, can’t decide if an M only accepts at most k inputs

Example

The following language is decidable:

L := {〈M〉 | M contains at most 5 states}

Easy check by looking at encoding of M

Not a behavioural property

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 43 / 148

Basic Computability Theory Decidability, Undecidability, Semi-Decidability

Summary Computability Theory

Defined a model of computation: Turing machines

Explored properties:
I Decidability and Undecidability
I Semi-Decidability
I Example: The Halting problem is undecidable

Reductions as a relative concept

Closedness allows using them for absolute results

Rice’s Theorem:
All non-trivial behavioural properties of TM are undecidable.

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 44 / 148

Complexity Classes

Course Outline

0 Introduction

1 Basic Computability Theory
Formal Languages
Model of Computation: Turing Machines
Decidability, Undecidability, Semi-Decidability

2 Complexity Classes
Landau Symbols: The O(·) Notation
Time and Space Complexity
Relations between Complexity Classes

3 Feasible Computations: P vs. NP
Proving vs. Verifying
Reductions, Hardness, Completeness
Natural NP-complete problems

4 Advanced Complexity Concepts
Non-uniform Complexity
Probabilistic Complexity Classes
Interactive Proof Systems

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 45 / 148

Complexity Classes Introduction

Restricted Resources

Previous Chapter: Computability Theory
I “What can algorithms do?”

Now: Complexity Theory
I “What can algorithms do with restricted resources?”
I Resources: Runtime and memory

Assume the machines always halt in qyes or qno

I But after how many steps?
I How many tape positions were necessary?

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 46 / 148

Complexity Classes Landau Symbols

Landau Symbols

Resource bounds will depend on input size

Described by functions f : N→ N
Need ability to express “grows in the order of”

I Consider f1(n) = n2 and f2(n) = 5 · n2 + 3
I Eventually, n2 dominates for large n
I Both express “quadratic growth”
I Want to see all c1 · n2 + c2 equivalent
I Asymptotic behaviour

Formal notation for this: O(n2)

Will provide a kind of upper bound of asymptotic growth

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 47 / 148

Complexity Classes Landau Symbols

Landau Symbols: Definition

Definition

Let g : N→ N. O(g) denotes the set of all functions f : N→ N such that
there are n0 and c with

∀n ≥ n0 : f (n) ≤ c · g(n).

We also just write f (n) = O(g(n)).

Lemma (Alternative characterization)

For f , g : N→ N>0 the following holds:

f ∈ O(g) ⇐⇒ ∃c > 0 : lim sup
n→∞

f (n)

g(n)
≤ c

(Without proof.)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 48 / 148

Complexity Classes Landau Symbols

Landau Symbols: Examples

We have 5 · n2 + 3 = O(n2)

One even writes O(n) = O(n2) (meaning “⊆”)

Both is abuse of notation! Not symmetric: O(n2) 6= O(n)!

Examples

I n · log(n) = O(n2)

I nc = O(2n) for all constants c

I O(1) are the bounded functions

I nO(1) are the functions bounded by a polynomial

Other symbols exist for lower bounds (Ω), strict bounds (o, ω) and
“grows equally” (Θ)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 49 / 148

Complexity Classes Time and Space Complexity

Proper complexity functions

Landau-Symbols classify functions according to growth

Which functions to consider for resource bounds?

Only “proper” ones:

Definition

Let f : N→ N be a computable function.

1 f is time-constructible if there exists a TM which on input 1n stops after
O(n + f (n)) steps.

2 f is space-constructible if there exists a TM which on input 1n outputs 1f (n)

and does not use more than O(f (n)) space.

This allows us to assume “stopwatches”

All common “natural” functions have these properties

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 50 / 148

Complexity Classes Time and Space Complexity

Resource measures

Definition
1 The runtime timeM(w) of a TM M with input w is defined as:

timeM(w) := max{t ≥ 0 | ∃y , z ∈ Γ∗, q ∈ F : (w , q0, ε) `t (y , q, z)}

2 If, for all inputs w and a t : N→ N it holds that timeM(w) ≤ t(|w |),
then M is t(n)-time-bounded . Further:

DTIME(t(n)) := {L(M) | M is t(n)-time-bounded}

3 The required space spaceM(w) of a TM M with input w is defined as:

spaceM(w) := max{n ≥ 0 | M uses n squares on a working tape}

4 If for all inputs w and an s : N→ N it holds that spaceM(w) ≤ s(|w |),
then M is s(n)-space-bounded . Further:

DSPACE(s(n)) := {L(M) | M is s(n)-space-bounded}

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 51 / 148

Complexity Classes Time and Space Complexity

Resource measures (Cont.)

Definition
1 For functions, we have:

FTIME(t(n)) := {f | ∃M being t(n)-time-bounded and computing f }

2 For non-deterministic M, time and space are as above, and we have:

NTIME(t(n)) := {L(M) | M is non-det. and t(n)-time-bounded}
NSPACE(s(n)) := {L(M) | M is non-det. and s(n)-space-bounded}

Recall: Non-deterministic machines can choose different next steps
I Can be imagined as a computation tree
I Time and space bounds for all paths in the tree

Note: spaceM(w) is for the working tapes
I Only they “consume memory” during the computation
I Input (read-only) and output (write-only) should not count
I Allows notion of sub-linear space, e.g., log(|w |)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 52 / 148

Complexity Classes Time and Space Complexity

Common Complexity Classes

Deterministic time complexity classes:
I Linear time:

LINTIME :=
⋃
c≥1

DTIME(cn + c) = DTIME(O(n))

I Polynomial time:

P :=
⋃
c≥1

DTIME(nc + c) = DTIME(nO(1))

I Polynomial time functions:

FP :=
⋃
c≥1

FTIME(nc + c) = FTIME(nO(1))

I Exponential time

EXP :=
⋃
c≥1

DTIME(2nc +c) = DTIME
(

2nO(1)
)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 53 / 148

Complexity Classes Time and Space Complexity

Common Complexity Classes (Cont.)

Deterministic space complexity classes:
I Logarithmic space:

L := DSPACE(O(log(n)))

I Polynomial space:

PSPACE := DSPACE(nO(1))

I Exponential space:

EXPSPACE := DSPACE
(

2nO(1)
)

Non-deterministic classes defined similarly:

NLINTIME, NP, NEXP, NL, NPSPACE and NEXPSPACE

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 54 / 148

Complexity Classes Time and Space Complexity

Common Complexity Classes: Example

Example (REACH)

Consider again the reachability problem:

REACH := {(G , u, v) | there is a path from u to v in G}
Decidable – but how much space is needed?
Non-deterministically : REACH ∈ NL

I Explore graph beginning with u
I Choose next node non-deterministically, for at most n steps
I If there is a path to v , it can be found that way
I Space: For step counter and number of current node: O(log(n))

Deterministically : REACH ∈ DSPACE(O(log(n)2))
I Sophisticated recursive algorithm
I Split path p of length ≤ n:

F p = p1p2 with p1, p2 of length ≤ n/2
F Iterate over all intermediate nodes

I Space: Recursion stack depth log(n) and elements log(n): O(log(n)2)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 55 / 148

Complexity Classes Relations between Complexity Classes

Complexity Class Relations

Clear from definitions:

LINTIME ⊆ P ⊆ EXP

Same relation for non-deterministic classes:

NLINTIME ⊆ NP ⊆ NEXP

Only inclusion, no separation yet:
I Know that LINTIME ⊆ P
I But is there L ∈ P− LINTIME?
I Such an L would separate LINTIME and P

Will now see a very “fine-grained” separation result

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 56 / 148

Complexity Classes Relations between Complexity Classes

Hierarchy Theorem

Theorem (Hierarchy Theorem)

Let f : N→ N be time-constructible and g : N→ N with

lim inf
n→∞

g(n) · log(g(n))

f (n)
= 0.

Then there exists L ∈ DTIME(f (n))− DTIME(g(n)).

Let f : N→ N be space-constructible and g : N→ N with

lim inf
n→∞

g(n)

f (n)
= 0.

Then there exists L ∈ DSPACE(f (n))− DSPACE(g(n)).

(Without proof.)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 57 / 148

Complexity Classes Relations between Complexity Classes

Hierarchy Theorem: Examples

Example

Let Ck := DTIME(O(nk))

Using time hierarchy theorem:

C1 (C2 (C3 (. . . (Infinite hierarchy)

Means: Let p(n) and q(n) be polynomials, deg p < deg q

Then there is L such that:
I Decidable in O(q(n)) time
I Not decidable in O(p(n)) time

Remark: Theorem states “more time means more power”

Also the case with REC (RE:
I REC: Time bounded: Always halt
I RE: May not halt, “infinite time”

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 58 / 148

Complexity Classes Relations between Complexity Classes

Determinism vs. Non-determinism

Theorem

For each space-constructible function f : N→ N, the following holds:

DTIME(f) ⊆ NTIME(f) ⊆ DSPACE(f) ⊆ NSPACE(f)

Proof (Overview).

First and third clear: Determinism is special case
Now show NTIME(f) ⊆ DSPACE(f)
Time bounded by f (n) implies space bounded by f (n)
Still need to remove non-determinism
Key idea:

I Time bound f (n): At most f (n) non-deterministic choices
I Computation tree at most f (n) deep
I Represent paths by strings of size f (n)
I Simulate all paths by enumerating the strings

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 59 / 148

Complexity Classes Relations between Complexity Classes

Determinism vs. Non-determinism (Cont.)

Theorem

For each space-constructible function f : N→ N, the following holds:

DTIME(f) ⊆ NTIME(f) ⊆ DSPACE(f) ⊆ NSPACE(f)

Proof (Details).

Want to show NTIME(f) ⊆ DSPACE(f)
Let L ∈ NTIME(f) and N corresponding machine
Let d be maximal degree of non-determinism
Build new machine M:

1 Systematically generate words c ∈ {1, . . . , d}f (n)

2 Simulate N with non-deterministic choices c
3 Repeat until all words generated (overwrite c each time)

Simulation is deterministic and needs only O(f (n)) space
I (But takes exponentially long!)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 60 / 148

Complexity Classes Relations between Complexity Classes

Deterministic vs. Non-deterministic Space

Theorem implies:

P ⊆ NP ⊆ PSPACE ⊆ NPSPACE

Thus, in context of polynomial bounds:
I Non-determinism “beats” determinism
I Space “beats” time

But are these inclusions strict?

Will now see: PSPACE = NPSPACE

Recall: REACH ∈ DSPACE(O(log(n)2))

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 61 / 148

Complexity Classes Relations between Complexity Classes

Deterministic vs. Non-deterministic Space (Cont.)

Theorem (Savitch)

For each space-constructible function f : N→ N, the following holds:

NSPACE(f) ⊆ DSPACE(f 2)

Proof (Sketch).

Let L ∈ NSPACE(f) and ML corresponding non-deterministic TM
Consider configuration graph of ML for an input w

I Each node is a configuration
I Edges are given by step relation `
I ML space bounded, thus only c f (|w |) configurations

Assume just one final accepting configuration
Question: “Is there a path from initial to final configuration?”
Reachability problem!

Solve it with O
(

log
(
c f (n)

)2
)

= O(f (n)2) space

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 62 / 148

Complexity Classes Relations between Complexity Classes

Polynomial Complexity Classes

Corollary

P ⊆ NP ⊆ PSPACE = NPSPACE

Previous theorem implies NPSPACE ⊆ PSPACE

First two inclusions: Difficult, next chapter!

Following concept will be of use:

Definition

Let C ⊆ P(Σ∗) be a class of languages. We define:

co- C := {L | L ∈ C}

For deterministic C ⊆ REC: C = co- C

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 63 / 148

Complexity Classes Relations between Complexity Classes

Complementary Classes: Asymmetries

Consider RE and co- RE:
I For RE the TM always halts on the positive inputs

F “For x ∈ L there is a finite path to qyes”

I For co- RE it always halts on the negative inputs
F “For x /∈ L there is a finite path to qno”

I RE 6= co- RE (Halting Problem, ..)
I REC = co- REC and REC = RE∩ co- RE

Consider NPSPACE and co- NPSPACE:
I We know PSPACE = NPSPACE and PSPACE = co- PSPACE
I Thus NPSPACE = co- NPSPACE

What about P, NP and co- NP?
I Looks like RE situation:

F NP: “For x ∈ L there is a bounded path to qyes”
F co- NP: “For x /∈ L there is a bounded path to qno”

I Surprisingly: Relationship not known!

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 64 / 148

Feasible Computations: P vs. NP Introduction

Course Outline

0 Introduction

1 Basic Computability Theory
Formal Languages
Model of Computation: Turing Machines
Decidability, Undecidability, Semi-Decidability

2 Complexity Classes
Landau Symbols: The O(·) Notation
Time and Space Complexity
Relations between Complexity Classes

3 Feasible Computations: P vs. NP
Proving vs. Verifying
Reductions, Hardness, Completeness
Natural NP-complete problems

4 Advanced Complexity Concepts
Non-uniform Complexity
Probabilistic Complexity Classes
Interactive Proof Systems

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 65 / 148

Feasible Computations: P vs. NP Introduction

Course Outline

0 Introduction

1 Basic Computability Theory
Formal Languages
Model of Computation: Turing Machines
Decidability, Undecidability, Semi-Decidability

2 Complexity Classes
Landau Symbols: The O(·) Notation
Time and Space Complexity
Relations between Complexity Classes

3 Feasible Computations: P vs. NP
Proving vs. Verifying
Reductions, Hardness, Completeness
Natural NP-complete problems

4 Advanced Complexity Concepts
Non-uniform Complexity
Probabilistic Complexity Classes
Interactive Proof Systems

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 66 / 148

Feasible Computations: P vs. NP Introduction

Feasible Computations

Will now focus on classes P and NP

Polynomial time bounds as “feasible”, “tractable”, “efficient”
I Polynomials grow only “moderately”
I Many practical problems polynomial
I Often with small degrees (n2 or n3)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 67 / 148

Feasible Computations: P vs. NP Proving vs. Verifying

Recall P and NP

Introduced P and NP via Turing machines:
I Polynomial time bounds
I Deterministic vs. non-deterministic operation

Recall P: For L1 ∈ P
I Existence of a deterministic TM M
I Existence of a polynomial pM(n)
I For each input x ∈ Σ∗ runtime ≤ pM(|x |)

Recall NP: For L2 ∈ NP
I Existence of a non-deterministic TM N
I Existence of a polynomial pN(n)
I For each input x ∈ Σ∗ runtime ≤ pN(|x |)
I For all computation paths

Theoretical model – practical significance?

Introduce now a new characterization of NP

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 68 / 148

Feasible Computations: P vs. NP Proving vs. Verifying

A new NP characterization

Definition

Let R ∈ Σ∗ × Σ∗ (binary relation). R is polynomially bounded , if there
exists a polynomial p(n), such that:

∀(x , y) ∈ R : |y | ≤ p(|x |)

Lemma

NP is the class of all L such that there exists a polynomially bounded
RL ∈ Σ∗ × Σ∗ satisfying:

RL ∈ P, and

x ∈ L ⇐⇒ ∃w : (x ,w) ∈ RL.

We call w a witness (or proof) for x ∈ L and RL the witness relation.

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 69 / 148

Feasible Computations: P vs. NP Proving vs. Verifying

Proving vs. Verifying

For L ∈ P:
I Machine must decide membership of x in polynomial time
I Interpret as “finding a proof ” for x ∈ L

For L ∈ NP: (new characterization)
I Machine is provided a witness w
I Interpret as “verifying the proof ” for x ∈ L

Efficient proving and verifying procedures:
I For P, runtime is bounded
I For NP, also witness size is bounded

Write L ∈ NP as:

L = {x ∈ Σ∗ | ∃w ∈ Σ∗ : (x ,w) ∈ RL}

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 70 / 148

Feasible Computations: P vs. NP Proving vs. Verifying

Proving vs. Verifying (Cont.)

P-problems: solutions can be efficiently found

NP-problems: solutions can be efficiently checked

Checking certainly a prerequisite for finding (thus P ⊆ NP)

But is finding more difficult?
I Intuition says: “Yes!”
I Theory says: “We don’t know.” (yet?)

Formal formulation:
P

?
= NP

One of the most important questions of computer science!
I Many proofs for either “=” or “ 6=”
I None correct so far
I Clay Mathematics Institute offers $1.000.000 prize

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 71 / 148

Feasible Computations: P vs. NP Proving vs. Verifying

A new NP characterization (Cont.)

Lemma (Revisited)

NP is the class of all L such that there exists a polynomially bounded
RL ∈ Σ∗ × Σ∗ satisfying:

RL ∈ P, and
x ∈ L ⇐⇒ ∃w : (x ,w) ∈ RL. (w is a witness)

Proof (First part).

First, let L ∈ NP. Let N be the machine with pN(n) time bound.
Want to show: RL as above exists
Idea:

I On input x , all computations do ≤ pN(|x |) steps
I x ∈ L iff an accepting computation exists
I Encode computation (non-deterministic choices) into w
I All such pairs (x ,w) define RL

RL has all above properties

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 72 / 148

Feasible Computations: P vs. NP Proving vs. Verifying

A new NP characterization (Cont. 2)

Lemma (Revisited)

NP is the class of all L such that there exists a polynomially bounded
RL ∈ Σ∗ × Σ∗ satisfying:

RL ∈ P, and
x ∈ L ⇐⇒ ∃w : (x ,w) ∈ RL. (w is a witness)

Proof (Second part).

Now, let L as above, using RL bounded by p(n)
Want to show: Non-deterministic N exists, polynomially bounded
Idea to construct N:

I RL bounds length of w by p(|x |)
I RL ∈ P: There is a M for checking RL

I N can “guess” w first
I Then simulate M for checking (x ,w) ∈ RL

I Accepting path exists iff ∃w : (x ,w) ∈ RL

N is polynomially time bounded

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 73 / 148

Feasible Computations: P vs. NP Proving vs. Verifying

A new co- NP characterization

Remark

Recall: All L ∈ NP can now be written as:

L = {x ∈ Σ∗ | ∃w ∈ Σ∗ : (x ,w) ∈ RL}
Read this as:

I Witness relation RL

I For each positive instance, there is a proof w
I For no negative instance, there is a proof w
I The proof is efficiently checkable

Similar characterization for all L′ ∈ co- NP:

L′ = {x ∈ Σ∗ | ∀w ∈ Σ∗ : (x ,w) /∈ RL′}
Read this as:

I Disproof relation RL′

I For each negative instance, there is a disproof w
I For no positive instance, there is a disproof w
I The disproof is efficiently checkable

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 74 / 148

Feasible Computations: P vs. NP Proving vs. Verifying

Boolean Formulas

Definition

Let X = {x1, . . . , xN} be a set of variable names.

Define boolean formulas BOOL inductively:
I ∀i : xi ∈ BOOL.
I ϕ1, ϕ2 ∈ BOOL =⇒ (ϕ1 ∧ϕ2), (¬ϕ1) ∈ BOOL (conjunction and negation)

A truth assignment for the variables in X is a word α1 . . . αN︸ ︷︷ ︸
α

∈ {0, 1}N .

The value ϕ(α) of ϕ under α is defined inductively:

ϕ : xi ¬ψ ψ1 ∧ ψ2

ϕ(α) : αi 1− ψ(α) ψ1(α) · ψ2(α)

Shorthand notations:
I ϕ1 ∨ ϕ2 (disjunction) for ¬(¬ϕ1 ∧ ¬ϕ2),
I ϕ1 → ϕ2 (implication) for ¬ϕ1 ∨ ϕ2

I ϕ1 ↔ ϕ2 (equivalence) for (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 75 / 148

Feasible Computations: P vs. NP Proving vs. Verifying

Example: XOR Function

Example

Consider the exclusive or XOR with m arguments:

XOR(z1, . . . , zm) :=
m∨

i=1

zi ∧
∧

1≤i<j≤m

¬(zi ∧ zj)

XOR(z1, . . . , zm) = 1 ⇐⇒ zj = 1 for exactly one j

Can also be used as shorthand notation.

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 76 / 148

Feasible Computations: P vs. NP Proving vs. Verifying

Example for NP: The Satisfiability Problem

Example

Consider ψ1 = (x1 ∨ ¬x2) ∧ x3 and ψ2 = (x1 ∧ ¬x1):
I ψ1(α) = 1 for α = 011
I ψ2(α) = 0 for all α

ϕ ∈ BOOL is called satisfiable, if ∃α : ϕ(α) = 1

Can encode boolean formula into words over fixed alphabet Σ

Language of all satisfiable formulas, the satisfiability problem:

SAT := {〈ϕ〉 | ϕ ∈ BOOL is satisfiable}

Obviously, SAT ∈ NP:
I Witness for positive instance 〈ϕ〉 is α with ϕ(α) = 1
I Size of witness: linearly bounded in |〈ϕ〉|
I Validity check efficient

Unknown, whether SAT ∈ P!

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 77 / 148

Feasible Computations: P vs. NP Reductions, Hardness, Completeness

Bounded Reductions

Comparing P and NP by directly comparing problems

Assume A,B ∈ NP and C ∈ P
I How do A and B relate?
I Is C “easier” than A and B?
I Maybe we just didn’t find good algorithms for A or B?

Recall: Reductions
I Given problems A and B
I Solve A by reducing it to B and solving B
I Tool for that: Reduction function f
I Consequence: A is “easier” than B

Used many-one reductions in unbounded setting

Now: Bounded setting , so f should be also bounded!
I Introduce “Cook reductions”

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 78 / 148

Feasible Computations: P vs. NP Reductions, Hardness, Completeness

Polynomial Reduction (Cook Reduction)

Definition

A ⊆ Σ∗ is polynomially reducible to B ⊆ Σ∗ (written A ≤p
m B),

if there f ∈ FP, such that

∀w ∈ Σ∗ : w ∈ A ⇐⇒ f (w) ∈ B

Lemma

For all A,B and C the following hold:

1 A ≤p
m B ∧ B ∈ P =⇒ A ∈ P (Closedness of P under ≤p

m)

2 A ≤p
m B ∧ B ∈ NP =⇒ A ∈ NP (Closedness of NP under ≤p

m)

3 A ≤p
m B ∧ B ≤p

m C =⇒ A ≤p
m C (Transitivity of ≤p

m)

4 A ≤p
m B ⇐⇒ A ≤p

m B

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 79 / 148

Feasible Computations: P vs. NP Reductions, Hardness, Completeness

Hardness, Completeness

Can compare problems now

Introduce now “hard” problems for a class C:
I Can solve whole C if just one of them
I Are more difficult then everything in C

Definition

I A is called C-hard , if: ∀L ∈ C : L ≤p
m A

I If A is C-hard and A ∈ C, then A is called C-complete

I NPC is the class of all NP-complete languages

NPC: “Most difficult” problems in NP

Solve one of them, solve whole NP

Solve one of them efficiently , solve whole NP efficiently

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 80 / 148

Feasible Computations: P vs. NP Reductions, Hardness, Completeness

Hardness, Completeness: Properties

Lemma

1 A is C-complete if and only if A is co- C-complete.

2 P∩NPC 6= ∅ =⇒ P = NP

3 A ∈ NPC∧ A ≤p
m B ∧ B ∈ NP =⇒ B ∈ NPC

Proof (First part).

Let A be C-complete, and L ∈ co- C
Want to show: L ≤p

m A

Indeed: L ∈ co- C ⇐⇒ L ∈ C =⇒ L ≤p
m A ⇐⇒ L ≤p

m A

Other direction similar (symmetry)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 81 / 148

Feasible Computations: P vs. NP Reductions, Hardness, Completeness

Hardness, Completeness: Properties (Cont.)

Lemma

1 A is C-complete if and only if A is co- C-complete.

2 P∩NPC 6= ∅ =⇒ P = NP

3 A ∈ NPC∧ A ≤p
m B ∧ B ∈ NP =⇒ B ∈ NPC

Proof (Second part).

Assume A ∈ P∩NPC and let L ∈ NP

Want to show: L ∈ P (since then P = NP)

L ∈ NP =⇒ L ≤p
m A since A ∈ NPC

L ≤p
m A =⇒ L ∈ P since A ∈ P

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 82 / 148

Feasible Computations: P vs. NP Reductions, Hardness, Completeness

Hardness, Completeness: Properties (Cont. 2)

Lemma

1 A is C-complete if and only if A is co- C-complete.

2 P∩NPC 6= ∅ =⇒ P = NP

3 A ∈ NPC∧ A ≤p
m B ∧ B ∈ NP =⇒ B ∈ NPC

Proof (Third part).

Assume A ∈ NPC, B ∈ NP, A ≤p
m B and L ∈ NP

Want to show: L ≤p
m B (since then, B is NP-complete)

L ∈ NP =⇒ L ≤p
m A since A ∈ NPC

L ≤p
m A =⇒ L ≤p

m B since A ≤p
m B (transitivity!)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 83 / 148

Feasible Computations: P vs. NP Reductions, Hardness, Completeness

A first NP-complete Problem

Do NP-complete problems actually exist? Indeed:

Lemma

The following language is NP-complete:

NPCOMP := {(〈M〉, x , 1n) | M is NTM and accepts x after ≤ n steps}

(“NTM” means “non-deterministic Turing machine”.)

How to prove a problem A is NP-complete? 2 parts:

1. Membership: Show A ∈ NP
(Directly or via A ≤p

m B for a B ∈ NP)
2. Hardness: Show L ≤p

m A for all L ∈ NP
(Directly or via C ≤p

m A for a C which is NP-hard)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 84 / 148

Feasible Computations: P vs. NP Reductions, Hardness, Completeness

A first NP-complete Problem (Cont.)

Lemma

The following language is NP-complete:

NPCOMP := {(〈M〉, x , 1n) | M is NTM and accepts x after ≤ n steps}

Proof (First part).

Want to show: NPCOMP ∈ NP
Given (〈M〉, x , 1n)
If M accepts x in ≤ n steps, then at most n non-deterministic choices
For each x , these choices are witness w !

I Exactly the positive instances x have one w
I |w | is bounded by n
I Efficient check by simulating that path

All (x ,w) are witness relation RL, so NPCOMP ∈ NP

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 85 / 148

Feasible Computations: P vs. NP Reductions, Hardness, Completeness

A first NP-complete Problem (Cont. 2)

Lemma

The following language is NP-complete:

NPCOMP := {(〈M〉, x , 1n) | M is NTM and accepts x after ≤ n steps}

Proof (Second part).

Want to show now: NPCOMP is NP-hard
Let L ∈ NP, decided by ML, bound p(n)
Show L ≤p

m NPCOMP with reduction function:

f : x 7→ (〈ML〉, x , 1p(|x |))

I f ∈ FP
I If x ∈ L, then ML accepts x within p(|x |) steps
I If x /∈ L, then ML never accepts x
I Thus: x ∈ L ⇐⇒ f (x) ∈ NPCOMP

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 86 / 148

Feasible Computations: P vs. NP NP-completeness of SAT

NP-completeness of SAT

Know now: There is an NP-complete set

Practical relevance?

Are there “natural” NP-complete problems?

Recall the satisfiability problem:

SAT := {〈ϕ〉 | ϕ ∈ BOOL is satisfiable}

We saw that SAT ∈ NP:
I A satisfying truth assignment α is witness

Even more, it’s one of the most difficult NP-problems:

Theorem (Cook, Levin)

SAT is NP-complete.

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 87 / 148

Feasible Computations: P vs. NP NP-completeness of SAT

NP-completeness of SAT: Proof ideas

We will show NPCOMP ≤p
m SAT

Need reduction function f ∈ FP such that:
I Input (〈M〉, x , 1n): Machine M, word x , runtime bound n
I Output ψ: Boolean formula such that

(〈M〉, x , 1n) ∈ NPCOMP ⇐⇒ ψ ∈ SAT .

Assume M has just one tape

If M accepts x , then within n steps

Only 2n + 1 tape positions reached!

Central idea:
I Imagine a configuration as a line, O(n) symbols
I Whole computation as a matrix with n lines
I Encode matrix into formula ψ
I ψ satisfiable iff computation reaches qyes

I Formula size = Matrix size = O(n2)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 88 / 148

Feasible Computations: P vs. NP NP-completeness of SAT

NP-completeness of SAT: Proof ideas (Cont.)

Note: M is non-deterministic
I Different computations possible for each x
I Different paths in computation tree

Matrix represents one path to qyes

If x ∈ L(M) then there is at least one path to qyes

I Each path described by one matrix
I Thus, at least one matrix!

If x /∈ L(M) then there no path to qyes

I Thus, there is no matrix!

Formula ψ describes a matrix which
I Represents a computation path
I Of length at most n
I To qyes

Thus: ψ satisfiable iff accepting computation path exists!

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 89 / 148

Feasible Computations: P vs. NP NP-completeness of SAT

NP-completeness of SAT: Proof details

Describe now the formula ψ

Given is M, states Q = {q0, . . . , qk}, tape alphabet Γ = {a1, . . . , al}
Final state qyes ∈ Q

Used boolean variables:
I Qt,q for all t ∈ [0, n] and q ∈ Q.

Interpretation: After step t, the machine is in state q.
I Ht,i for all t ∈ [0, n] and i ∈ [−n, n].

Interpretation: After step t, the tape head is at position i .
I Tt,i,a for all t ∈ [0, n], i ∈ [−n, n] and a ∈ Γ.

Interpretation: After step t, the tape contains symbol a at position i .

Number of variables: O(n2)

Structure of ψ:

ψ := Conf ∧ Start ∧ Step ∧ End

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 90 / 148

Feasible Computations: P vs. NP NP-completeness of SAT

ψ := Conf ∧ Start ∧ Step ∧ End

Part Conf of ψ:
I Ensures: Satisfying truth assignments describe valid computations

Again, 3 parts:

Conf := ConfQ ∧ ConfH ∧ ConfT

ConfQ :=
n∧

t=0

XOR(Qt,q0 , . . . ,Qt,qk
)

ConfH :=
n∧

t=0

XOR(Ht,−n, . . . ,Ht,n)

ConfT :=
n∧

t=0

n∧
i=−n

XOR(Tt,i ,a1 , . . . ,Tt,i ,al
)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 91 / 148

Feasible Computations: P vs. NP NP-completeness of SAT

ψ := Conf ∧ Start ∧ Step ∧ End

Part Start of ψ:
I Ensures: At t = 0, machine is in start configuration

One single formula:

Start := Q0,q0 ∧ H0,0 ∧
−1∧

i=−n

T0,i ,2 ∧
|x |−1∧
i=0

T0,i ,xi+1
∧

n∧
i=|x |

T0,i ,2

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 92 / 148

Feasible Computations: P vs. NP NP-completeness of SAT

ψ := Conf ∧ Start ∧ Step ∧ End

Part Step of ψ:
I Ensures: At each step, machine executes a legal action
I Only one tape field changed; head moves by one position
I Consistency with δ

Step := Step1 ∧ Step2

Step1 :=
n−1∧
t=0

n∧
i=−n

∧
a∈Γ

((¬Ht,i ∧ Tt,i ,a)→ Tt+1,i ,a)

Step2 :=
n−1∧
t=0

n∧
i=−n

∧
a∈Γ

∧
p∈Q

(
(Qt,p ∧ Ht,i ∧ Tt,i ,a)

→
∨

(q,b,D)∈δ(p,a)

(Qt+1,q ∧ Ht+1,i+D ∧ Tt+1,i ,b)
)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 93 / 148

Feasible Computations: P vs. NP NP-completeness of SAT

ψ := Conf ∧ Start ∧ Step ∧ End

Part End of ψ:
I Ensures: Eventually , machine reaches an accepting configuration

One single formula:

End :=
n∨

t=0

Qt,qyes

Completes proof:
I By construction, ψ ∈ SAT ⇐⇒ (〈M〉, x , 1n) ∈ NPCOMP
I Construction is efficient

2

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 94 / 148

Feasible Computations: P vs. NP NP-completeness of SAT

co- NP-completeness of UNSAT

Remark

SAT is NP-complete

Consider its complement:

UNSAT := {〈ϕ〉 | ϕ ∈ BOOL is not satisfiable} = SAT

Clearly, UNSAT ∈ co- NP:
I Disproof for 〈ϕ〉 is α with ϕ(α) = 1
I Can be checked efficiently, like for SAT
I Follows from SAT ∈ NP anyway

SAT is NP-complete ⇐⇒ UNSAT is co- NP-complete

Will now study some more NP-complete problems!

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 95 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

CIRSAT: Satisfiability of Boolean Circuits

Definition (Boolean Circuit)

Let X = {x1, . . . , xN} be a set of variable names.

A boolean circuit over X is a sequence c = (g1, . . . , gm) of gates:

gi ∈ {⊥,>, x1, . . . , xN , (¬, j), (∧, j , k)}1≤j ,k<i

Each gi represents a boolean function f
(i)
c with N inputs α ∈ {0, 1}N :

gi (α) : ⊥ > xi (¬, j) (∧, j , k)

f
(i)
c (α) : 0 1 αi 1− f

(j)
c (α) f

(j)
c (α) · f (k)

c (a)

Use a ∨ b as shorthand for ¬(¬a ∧ ¬b)

Whole circuit c represents boolean function fc(α) := f
(m)
c (α).

c is satisfiable if ∃α ∈ {0, 1}N such that fc(α) = 1.

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 96 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

CIRSAT: Satisfiability of Boolean Circuits (Cont.)

Practical question: “Is circuit ever 1?”
I Find unused parts of circuits (like dead code)

Formally:
I (Assume again some fixed encoding 〈c〉 of circuit c)

Definition

The circuit satisfiability problem is defined as:

CIRSAT := {〈c〉 | c is a satisfiable circuit}

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 97 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

CIRSAT: Satisfiability of Boolean Circuits (Cont. 2)

Lemma

CIRSAT is NP-complete.

Proof.

CIRSAT ∈ NP: Satisfying input is witness w
I Size N for N variables
I Verifying: Evaluating all gates is efficient

SAT ≤p
m CIRSAT: Transform formula ϕ to circuit c

Remark: Transformation circuit to equivalent formula not efficient
I Circuit can “reuse” intermediate results
I CIRSAT ≤p

m SAT anyway (SAT is NP-complete!)
I Transformation produces satisfiability equivalent formula

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 98 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

CNF: Restricted Structure of Boolean Formulas

Definition (CNF)

Let X = {x1, . . . , xN} be a set of variable names.

A literal l is either xi (variable) or ¬xi (negated variable, also xi)
A clause is a disjunction C = l1 ∨ . . . ∨ lk of literals
A boolean formula in conjunctive normal form (CNF) is a conjunction of
clauses ϕ = C1 ∧ . . . ∧ Cm

Set of all CNF formulas:

CNFBOOL :=

m∧

i=1

k(i)∨
j=1

σi ,j | σi ,j are literals

CNF formulas where the clauses contain only k literals: k-CNF

k-SAT := {〈ϕ〉 | ϕ ∈ k-CNFBOOL is satisfiable}

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 99 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

k-SAT: NP-complete for k ≥ 3

Lemma

1 1-SAT, 2-SAT ∈ P

2 3-SAT is NP-complete.

Proof (Overview).

First part: Exercise

Second part:
I 3-SAT ∈ NP clear: 3-SAT ≤p

m SAT (special case)
I Then show CIRSAT ≤p

m 3-SAT
I Given a circuit c = (g1, . . . , gm), construct a 3-CNF formula ψc

I Variables in formula: One for each input and each gate
I x1, . . . , xN for inputs of circuit
I y1, . . . , ym for gates
I Clauses (size 3) enforce values of gates

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 100 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

NP-completeness of 3-SAT

Lemma
2 3-SAT is NP-complete.

Proof (Details).

Gate gi Clause Semantics

⊥ {yi} yi = 0
> {yi} yi = 1
xj {yi , xj}, {xj , yi} yi ↔ xj

(¬, j) {yi , yj}, {yi , yj} yi ↔ yj

(∧, j , k) {yi , yj}, {yi , yk}, {yj , yk , yi} yi ↔ (yj ∧ yk)

Finally, add {ym}
All clauses together form ψc

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 101 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

NP-completeness of 3-SAT (Cont.)

Lemma
2 3-SAT is NP-complete.

Proof (Details, Cont.).

If c is satisfiable, then also ψc :
I Use assignment α of c for x1, . . . , xN

I Value f
(j)
c (α) at gate gj as value for yj

I By construction, all clauses true, thus ψc satisfied

If c not satisfiable, then neither ψc :
I fc(α) = 0 for all α
I Thus, f

(m)
c (α) always 0 (“top level gate”)

I If all clauses satisfied, ym = f
(m)
c (α), but then {ym} not satisfied

Thus, c ∈ CIRSAT ⇐⇒ ψc ∈ 3-SAT

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 102 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

Graph problems

So far: Satisfiability problems
I For boolean formulas (SAT, 3-SAT)
I For boolean circuits (CIRSAT)

Now: Graph problems
I Undirected graph: G = (V ,E)
I V are the nodes
I E ⊆

(
V
2

)
are the edges

I Efficient encoding possible (adjacency matrix or list)

Problems consider different properties of graphs

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 103 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

Independent Set Problem

First problem: Independent set problem
I Given: Undirected graph G = (V ,E) and number k
I Question: Is there I ⊆ V such that

1 ‖I‖ = k, and
2 No two nodes in I are connected?

Formally:

Definition

The independent set problem is defined as:

INDEPSET :=

{
(G , k) | ∃I ⊆ V (G) : ‖I‖ = k ∧

(
I

2

)
∩ E (G) = ∅

}
Turns out: Very difficult (i.e. NP-complete)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 104 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

INDEPSET is NP-complete

Lemma

INDEPSET is NP-complete.

Proof (Sketch).

INDEPSET ∈ NP: Set I is the witness

NP-completeness via 3-SAT ≤p
m INDEPSET:

I Given ϕ with k clauses, construct G
I Each literal is a node
I Connect literals from same clause (triangles)
I Connect complementary literals

If ϕ satisfiable:
Choose one satisfied literal in each clause for I

If G has k-independent set:
Represents a satisfying truth assignment

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 105 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

CLIQUE is NP-complete

Clique problem
I Given: Undirected graph G = (V ,E) and number k
I Question: Is there C ⊆ V such that

1 ‖C‖ = k?
2 All nodes in C are pairwise connected (a “k-clique”)

Formally:

Definition (Clique Problem)

The clique problem is defined as:

CLIQUE :=

{
(G , k) | ∃C ⊆ V (G) : ‖C‖ = k ∧

(
C

2

)
⊆ E

}
NP-complete! (See exercises)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 106 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

NODECOVER is NP-complete

Node cover problem
I Given: Undirected graph G = (V ,E) and number k
I Question: Is there N ⊆ V such that

1 ‖N‖ = k?
2 Each edge in E contains a node from N

Formally:

Definition (Node Cover Problem)

The node cover problem is defined as:

NODECOVER := {(G , k) | ∃N ⊆ V (G) : ‖N‖ = k ∧ ∀e ∈ E (G) : e ∩ N 6= ∅}

NP-complete! (See exercises)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 107 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

HAMILTONPATH is NP-complete

Hamilton path problem
I Given: Undirected graph G = (V ,E)
I Question: Is there a path p = (p0, . . . , pk) in G such that:

F All nodes pi are pairwise different? (“Hamilton path”)

Formally:

Definition (Hamilton Path Problem)

The Hamilton Path Problem is defined as:

HAMILTONPATH := {G | ∃p : p is Hamilton path in G}

NP-complete!

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 108 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

HITTINGSET is NP-complete

Hitting set problem
I Given:

F A set A
F A collection C = (C1, . . . Cm) of subsets of A: ∀i : Ci ⊆ A
F A number k

I Question: Is there a set H ⊆ A such that:
1 ‖H‖ = k
2 H contains an element from each Ci ∈ C (“k-hitting set”)

Not a graph problem, but related

Formally:

Definition (Hitting Set Problem)

The hitting set problem is defined as:

HITTINGSET := {(A,C , k) | ∃H ⊆ A : ‖H‖ = k ∧ ∀Ci ∈ C : H ∩ Ci 6= ∅}

NP-complete! (See exercises)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 109 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

TSP is NP-complete

Travelling Salesman Problem
I Given:

F n cities with a distance matrix D ∈ Nn×n

F A number k
I Question: Is there a tour through all cities such that

1 Each city is visited exactly once, and
2 The distance sum of the tour is at most k?

Formally:

Definition (Travelling Salesman Problem)

The Travelling salesman problem is defined as:

TSP :=

{
(D, k) | ∃π :

n∑
i=1

D[π(i), π(i + 1)] ≤ k

}

NP-complete!

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 110 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

KNAPSACK is NP-complete

Knapsack Problem
I Given:

F n items with values V = (v1, . . . , vn) and weights W = (w1, . . . , wn)
F A lower value limit l and an upper weight limit m

I Question: Is there a selection S ⊆ [1, n] of the items, such that
1 The sum of the values is at least l , and
2 The sum of the weights is at most m?

Formally:

Definition (Knapsack problem)

The Knapsack problem is defined as:

KNAPSACK :=

{
(V ,W , l ,m) | ∃S ⊆ [1, n] :

∑
i∈S

wi ≤ l ∧
∑
i∈S

vi ≥ m

}

NP-complete!

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 111 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

ILP is NP-complete

Integer linear programming problem
I Given: n linear inequalities in n variables with integer coefficients
I Question: Is there an integer solution to that system?

Formally:

Definition (Integer Linear Programming)

The Integer linear programming problem is defined as:

ILP := {(A, b) | ∃x ∈ Zn : Ax ≤ b}

NP-complete!

Remark: Linear programming (allowing rationals) is in P!

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 112 / 148

Feasible Computations: P vs. NP Natural NP-complete problems

BINPACK is NP-complete

Bin packing problem
I Given:

F n items with sizes A = (a1, . . . , an)
F b bins with capacity c each

I Question: Is it possible to pack the items into the bins?

Formally:

Definition (Bin Packing)

The bin packing problem is defined as:

BINPACK :=

(A, b, c) | ∃ partition S1, . . . ,Sb of [1, n] s.t. ∀i :
∑
j∈Si

aj ≤ c

NP-complete!

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 113 / 148

Feasible Computations: P vs. NP Beyond NP-completeness

Between P and NPC

Many problems are NP-complete

Many problems are in P

Assume P 6= NP:
I Are all problems either P or NP-complete?
I No!

Lemma

If P 6= NP, then there is a language L ∈ NP−(P∪NPC).
(Without proof.)

“Too easy” for NPC, “too difficult” for P

Will see a candidate later

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 114 / 148

Feasible Computations: P vs. NP Beyond NP-completeness

Pseudo-polynomial complexity

Precise problem formulation may make a difference
I Example: Integer linear programming
I In P without restriction to integers

Representation of problem instances may also matter:
I KNAPSACK is NP-complete
I But: Given n items and weight limit l , solve it in time O(n · l)
I Still not polynomial in input: Input size is O(n · log(l))
I l is represented binary (or other k-ary)

If polynomial in input values (not size/length): Pseudo-polynomial

Strong NP-completeness:
I NP-complete even if input values polynomially in input size
I Equivalent: Input values are given in unary
I Examples: All we saw except KNAPSACK
I Don’t have pseudo-polynomial algorithms (unless P = NP)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 115 / 148

Feasible Computations: P vs. NP Beyond NP-completeness

Unknown Relations

NP- and co- NP-complete problems: Regarded as “difficult”

How do they relate to each other?

I Unknown: NP
?
= co- NP

I NP 6= co- NP =⇒ P 6= co- NP, thus NP 6= co- NP stronger
I Intuition: Efficiently verifiable proofs, no efficiently verifiable disproofs

What about NP∩ co- NP?

I Unknown: P
?
(NP∩ co- NP

I Intuition: Efficiently verifiable proofs and disproofs, not efficiently
provable

“Upper end”: Also NP
?
(PSPACE unknown

I Intuition: Provable in polynomial space, but no (time-)efficiently
verifiable proofs

I Even P
?
(PSPACE unknown

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 116 / 148

Feasible Computations: P vs. NP Beyond NP-completeness

The Problems PRIMES and GI

P 6= NP not known, thus no language proven in NP−(P∪NPC)

Former candidate: PRIMES
I Deciding primality of a number
I Efficient probabilistic methods were known
I Shown in 2002: PRIMES ∈ P

Another candidate: GI (graph isomorphism)
I Given: Two graphs G1 and G2

I Question: Are they isomorphic?

GI := {(G1,G2) | ∃π : (e ∈ E (G1) ⇐⇒ π(e) ∈ E (G2))}

I Isomorphism: Graphs “look the same” (same structure)
I High practical relevance
I Many approximations, but no exact complexity known
I Own complexity class GI: Everything reducible to GI

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 117 / 148

Advanced Complexity Concepts

Course Outline

0 Introduction

1 Basic Computability Theory
Formal Languages
Model of Computation: Turing Machines
Decidability, Undecidability, Semi-Decidability

2 Complexity Classes
Landau Symbols: The O(·) Notation
Time and Space Complexity
Relations between Complexity Classes

3 Feasible Computations: P vs. NP
Proving vs. Verifying
Reductions, Hardness, Completeness
Natural NP-complete problems

4 Advanced Complexity Concepts
Non-uniform Complexity
Probabilistic Complexity Classes
Interactive Proof Systems

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 118 / 148

Advanced Complexity Concepts

Course Outline

0 Introduction

1 Basic Computability Theory
Formal Languages
Model of Computation: Turing Machines
Decidability, Undecidability, Semi-Decidability

2 Complexity Classes
Landau Symbols: The O(·) Notation
Time and Space Complexity
Relations between Complexity Classes

3 Feasible Computations: P vs. NP
Proving vs. Verifying
Reductions, Hardness, Completeness
Natural NP-complete problems

4 Advanced Complexity Concepts
Non-uniform Complexity
Probabilistic Complexity Classes
Interactive Proof Systems

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 119 / 148

Advanced Complexity Concepts Non-uniform Complexity

Uniform vs. Non-uniform Models

Turing Machine: One fixed (finite) machine for all input sizes

“One size fits it all” approach, uniform model

Some situations: More hardwired information when size grows
I Cryptography: Precomputed tables for different key sizes
I Want to model such attackers

Model this non-uniform notion using advice:
I Machine gets advice string an in addition to input
I One fixed string an for each input size n

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 120 / 148

Advanced Complexity Concepts Non-uniform Complexity

Turing Machine with Advice

Definition (Turing Machine with Advice)

A Turing machine with advice is a 6-tuple M = (Q, Γ, δ, q0,F ,A)
with Q, Γ, δ, q0,F as before and A = {an}n≥0

The set a A is called the advice.

Language accepted by M:

L(M) := {x ∈ Σ∗ | ∃y , z ∈ Γ∗ : (ε, q0, x#a|x |) `∗ (y , qyes , z)

(Separation symbol # ∈ Γ)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 121 / 148

Advanced Complexity Concepts Non-uniform Complexity

Turing Machine with Advice: Remarks

Classical Turing machine: Finite object

Advice: Infinite object, external information to machine

Difference to witness from NP:
I Witness was different for each input, a specific proof
I Only for the positive instances x ∈ L(M)
I Advice is for each input size, a static computational “aid”
I Fixed, the same an for each x of length n

Very powerful without restrictions:
I Any language L (even undecidable!) could be decided
I Encode into an a large table with all words Σn

I For each word x a bit: x ∈ L or x /∈ L
I Machine can look up in table

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 122 / 148

Advanced Complexity Concepts Non-uniform Complexity

Restricting the Advice: P/poly

Restrict now advice polynomially

Definition

P/poly is the set of all languages L such that:

1 L is decided by a TM M with advice A exists, and

2 ∀n : |an| ≤ p(n) for some polynomial p(n).

Clear: P ⊆ P/poly (just ignore the advice)

Thus: If ∃L ∈ NP with L /∈ P/poly then P 6= NP!

Difficulty: P/poly is powerful, contains still undecidable languages

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 123 / 148

Advanced Complexity Concepts Non-uniform Complexity

P/poly and Undecidability

Lemma

P/poly contains undecidable problems.

Proof.

First: There are unary undecidable languages
I Encode H using one-symbol alphabet

Second: All unary languages are in P/poly
I For each size n, there is only one instance xn

I Set an = 1 if it is positive (xn ∈ L)
I Set an = 0 if it is negative (xn /∈ L)

However, under reasonable assumptions: NP−P/poly = ∅

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 124 / 148

Advanced Complexity Concepts Non-uniform Complexity

Circuit Characterization of Non-uniformity

Defined P/poly using advice

Alternative: Use circuits

Recall: Circuit Cn

I Gets input string α ∈ {0, 1}n, and
I Produces output bit fc(α)
I Defines an accepted language:

L(Cn) := {α ∈ {0, 1}n | fCn(α) = 1}
Works only with fixed instance size

I Thus extend to circuit family C = {Cn}n≥0:

L(C) := {α ∈ L(C|α|)}

Non-uniformity: New device for each input size

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 125 / 148

Advanced Complexity Concepts Non-uniform Complexity

Circuit Size

Circuit family may have a non-finite representation (like advice)

Very powerful without restrictions (like advice)

Resource bound : size(Cn)
I Defined via number of gates
I Creates language class:

DSIZE(s(n)) := {L(C) | ∀n ≥ 0 : size(Cn) ≤ s(n)}

TM can be simulated with quadratic circuit size:

Lemma

DTIME(t(n)) ⊆ DSIZE(O(t(n)2)) (Without proof.)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 126 / 148

Advanced Complexity Concepts Non-uniform Complexity

Circuit Characterization of P/poly

Lemma

P/poly = DSIZE(nO(1))

Proof.

First: Let L ∈ P/poly by a TM M with advice A
I For each n, construct circuit Cn simulating M on Σn

I an is only polynomially big, can be hardwired
I Thus: L ∈ DSIZE(nO(1))

Second: Let L ∈ DSIZE(nO(1)) via circuit family C
I Use a TM for evaluating circuits
I Advice A is the (encoded) circuit family C
I Thus: L ∈ P/poly

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 127 / 148

Advanced Complexity Concepts Probabilistic Complexity Classes

Probabilistic Computation

Models so far: Had exactly one outcome
I Classical deterministic Turing machine
I Non-determinism with witness characterization
I Circuits

Relax this requirement: Introduce “coin-tosses”
I At each step, machine can choose different next steps
I Does so with a certain probability
I Introduces uncertainty: Same input, different answers

Produces still useful results if low error probability
I Cryptography: Attacker may be happy to succeed 1% of the time

Produces still useful results if low error probability

Syntactically the same as non-deterministic machine, but:
I Non-deterministic model: Theoretic model, implicit “∃” quantification
I Randomized model: Practical model, may be executed directly

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 128 / 148

Advanced Complexity Concepts Probabilistic Complexity Classes

Notation

For L ⊆ Σ∗ let χL : Σ∗ → {0, 1}:

χL(x) :=

{
1 if x ∈ L

0 if x /∈ L

χL is the characteristic function of L

Assume from now on:
I M outputs 1 for “accept”
I M outputs 0 for “reject”
I Thus, only qhalt instead of qyes and qno

Allows expressions like “M(x) = χL(x)”

“Coin tosses” r ∈ {0, 1}∗ as a second argument: M(x , r)
I Notation of probability: Probr [M(x , r) = 1]
I If M probabilistic, then r implicit: Prob[M(x) = 1]

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 129 / 148

Advanced Complexity Concepts Probabilistic Complexity Classes

One-sided Error: The class RP

Didn’t define accepted languages yet

First type: One-sided error
I Positive instances may be judged wrong (output 0 or 1)
I Negative instances are always correct (output 0)

Definition

RP is the class of all L for which a polynomially time-bounded,
probabilistic TM M exists, such that:

x ∈ L =⇒ Prob[M(x) = 1] ≥ 1/2

x /∈ L =⇒ Prob[M(x) = 1] = 0

Symmetric behaviour: co- RP (always correct for x ∈ L)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 130 / 148

Advanced Complexity Concepts Probabilistic Complexity Classes

P and NP vs. RP

Clear: P ⊆ RP (Machine is always correct, no coin tosses)

RP ⊆ NP:
I RP: For x ∈ L, at least half the paths lead to 1
I NP: For x ∈ L, at least one path leads to 1
I Both produce 0 for all runs on x /∈ L

Or, using the witness-based characterization of NP:

NP RP

x ∈ L: ∃w : (x ,w) ∈ RL Probr [(x , r) ∈ RL] ≥ 1/2
x /∈ L: ∀w : (x ,w) /∈ RL ∀r : (x , r) /∈ RL

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 131 / 148

Advanced Complexity Concepts Probabilistic Complexity Classes

Error Bound Robustness

Positive instances: Error probability 1/2
Assume: Error probability 2/3
Can be reduced to 1/2:

I Run the machine twice
I Accept, if one of the runs accepted
I For x /∈ L: Still never acceptance
I For x ∈ L: Error probability (2/3)2 = 4/9 < 1/2

In general, using more runs:

Lemma

If there is a polynomially time-bounded probabilistic TM M for L
and a polynomial p(n) such that:

x ∈ L =⇒ Prob[M(x) = 1] ≥ 1/p(|x |)
x /∈ L =⇒ Prob[M(x) = 1] = 0

Then L ∈ RP. (Without proof.)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 132 / 148

Advanced Complexity Concepts Probabilistic Complexity Classes

RP: Error Bound Robustness

Seen: Very low acceptance ratio is “boosted” to 1/2
Can “boost” even further, very close to 1 (“almost always”):

Lemma

For each L ∈ RP and each polynomial p(n),
there is a polynomially time-bounded probabilistic TM M such that:

x ∈ L =⇒ Prob[M(x) = 1] ≥ 1− 2−p(|x |)

x /∈ L =⇒ Prob[M(x) = 1] = 0

(Without proof.)

Thus, two equivalent characterizations:
1 Very weak (1/p(|x |) bound) for proof obligations
2 Very strong (1− 2−p(|x|) bound) for proof assumptions

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 133 / 148

Advanced Complexity Concepts Probabilistic Complexity Classes

Two-sided Error: The class BPP

Now allow errors for positive and negative instances

Definition

BPP is the class of all L for which a polynomially time-bounded,
probabilistic TM M exists, such that:

∀x ∈ L : Prob[M(x) = χL(x)] ≥ 2/3

Notation from before:

x ∈ L =⇒ Prob[M(x) = 1] ≥ 2/3

x /∈ L =⇒ Prob[M(x) = 1] < 1/3

Symmetric definition: BPP = co- BPP

Definition is again quite robust, regarding the 2/3

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 134 / 148

Advanced Complexity Concepts Probabilistic Complexity Classes

BPP: Error Bound Robustness

Lemma (Weak characterization of BPP)

If there is a polynomially time-bounded probabilistic TM M for L,
a polynomial p(n) and a computable function f (n) such that:

x ∈ L =⇒ Prob[M(x) = 1] ≥ f (|x |) + 1/p(|x |)
x /∈ L =⇒ Prob[M(x) = 1] < f (|x |)− 1/p(|x |)

Then L ∈ BPP. (Without proof.)

Lemma (Strong characterization of BPP)

For each L ∈ BPP and each polynomial p(n),
there is a polynomially time-bounded probabilistic TM M such that:

∀x ∈ L : Prob[M(x) = χL(x)] ≥ 1− 2−p(|x |)

(Without proof.)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 135 / 148

Advanced Complexity Concepts Probabilistic Complexity Classes

Relations of BPP

Clearly RP ⊆ BPP (no error for x /∈ L with RP)

Unknown relation between BPP and NP

Note: Error rate can be made exponentially small

“Efficient computation” nowadays often characterized with BPP
I In fact, P = BPP is a popular conjecture

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 136 / 148

Advanced Complexity Concepts Probabilistic Complexity Classes

Monte Carlo vs. Las Vegas

Described machines always answer, sometimes wrong
I Monte Carlo Algorithms

Contrast: Always answer right, but sometimes with “I don’t know”
I Las Vegas Algorithms

Denote “I don’t know” with “⊥”

Definition

ZPP is the class of all L for which a polynomially time-bounded,
probabilistic TM M exists, such that:

I ∀x ∈ L : Prob[M(x) = ⊥] ≤ 1/2, and

I ∀x ∈ L, r : M(x , r) 6= ⊥ =⇒ M(x , r) = χL(x)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 137 / 148

Advanced Complexity Concepts Probabilistic Complexity Classes

More Class Relationships

Lemma
1 P ⊆ ZPP ⊆ RP ⊆ BPP

2 ZPP = RP∩ co- RP

3 BPP ⊆ P/poly

4 BPP = P if pseudo random number generators exist.
(Efficient derandomization)

(Without proof.)

Pseudo random number generators (PRNGs) output looks random
I No observer can tell the difference
I No observer can predict the next bit
I PRNGs exist under certain (sophisticated) assumptions

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 138 / 148

Advanced Complexity Concepts Interactive Proof Systems

Intuitive Notion of a Proof

Proof: Prover and Verifier

Prover convinces verifier of validity of some assertion

In mathematics:
I Prover writes down a list of steps
I Verifier checks each step

In general:
I Interaction between the parties
I Verifier asks questions (possibly adaptively)
I Prover answers them

Careful verifier is only convinced of valid assertions

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 139 / 148

Advanced Complexity Concepts Interactive Proof Systems

Formalizing the Notion of a Proof

Interpret NP as non-interactive proofs:
I Supplied witness is the proof
I Machine checking it is the verifier, working efficiently
I Only true assertions (“x ∈ L”) have a proof
I “NP proof system”

General notion with similar properties:
1 Efficiency of the verifier
2 Correctness requirement:

Completeness: Each true assertion has a convincing proof strategy
Soundness: No false assertion has a convincing proof strategy

Will use Interactive Turing Machines for that

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 140 / 148

Advanced Complexity Concepts Interactive Proof Systems

Interactive Turing Machine (ITM)

Like ordinary Turing machine, but with
I Communication tape and
I Two communication states q? and q!

Operation of two composed machines 〈M1,M2〉:
I M1 starts in q0, M2 waits in q?

I M1 runs, writes message on shared communication tape
I M1 switches to q?, M2 switches to q!

I M2 runs, M1 waits
I .. And so on, back and forth ..
I Finally, M2 stops

Period between control switches: A round

Output: Tape contents of M2 after halting

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 141 / 148

Advanced Complexity Concepts Interactive Proof Systems

Interactive Proof System

Definition (Interactive Proof System)

An interactive proof system for L is a pair 〈P,V 〉 of ITMs with:

1 V is probabilistic and polynomially time-bounded.

2 Correctness requirement:

Completeness: ∀x ∈ L : Prob[〈P,V 〉(x) = 1] ≥ 2/3
Soundness: ∀x /∈ L : ∀P∗ : Prob[〈P∗,V 〉(x) = 1] < 1/3

Correctness is probabilistic

Bounds:
I Verifier is bounded
I Prover is not bounded

Soundness is against all provers (incl. very bad ones)

Useful model for cryptographic protocols

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 142 / 148

Advanced Complexity Concepts Interactive Proof Systems

IP hierarchy

Definition (IP hierarchy)

Let r : N→ N.

IP(r(n)) contains all L for with interactive proof systems 〈P,V 〉
such that on common input x , at most r(|x |) rounds are used.

IP contains all L having interactive proof systems:

IP :=
⋃
r

IP(r(n))

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 143 / 148

Advanced Complexity Concepts Interactive Proof Systems

Properties of IP

Clearly NP ⊆ IP:
I Just one round
I Prover just writes witness
I Verifier checks it (even deterministically)
I Thus, interaction necessary to gain expressiveness

Also randomness necessary:
I Let 〈P,V 〉 without random choices
I P always knows exactly answer of V
I Thus: Doesn’t need to ask, can calculate answer itself
I Therefore, only one final message needed
I This is an NP proof system!

Further: IP = IP(nO(1))
I V can only do polynomially many steps
I Thus: Number of rounds polynomially bounded

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 144 / 148

Advanced Complexity Concepts Interactive Proof Systems

IP: Error Bound Robustness

As for BPP, bounds can be minimized:

Lemma

For each L ∈ IP and each polynomial p(n), there is
an interactive proof system 〈P,V 〉 with strong correctness properties:

Completeness: ∀x ∈ L : Prob[〈P,V 〉(x) = 1] ≥ 1− 2−p(|x |)

Soundness: ∀x /∈ L : ∀P∗ : Prob[〈P∗,V 〉(x) = 1] < 2−p(|x |)

(Without proof.)

Price for that:
I Increased number of rounds (serial repetitions), or
I Increased message sizes (parallel repetitions)

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 145 / 148

Advanced Complexity Concepts Interactive Proof Systems

Example: Graph Non-Isomorphism

Theorem

GNI := GI ∈ IP.

Proof (Sketch).

Given G1,G2, show they are not isomorphic
Idea:

I “Shuffle” one of them
I Only possible to find which one it was, if G1,G2 not isomorphic

Thus, protocol:
I V chooses i ∈ {1, 2} and permutation π
I V sends H := π(Gi)
I P finds j such that Gj is isomorphic to H, sends j
I V checks whether i = j

If (G1,G2) ∈ GNI, P can find correct j (P is unbounded!)
If (G1,G2) /∈ GNI, P can only guess and fails with 50% chance

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 146 / 148

Advanced Complexity Concepts Interactive Proof Systems

IP: More properties

Note: Protocol was just two rounds, GNI ∈ IP(2)

GNI ∈ co- NP, not known whether in P or NP

Indeed, IP is quite strong:

Theorem

1 (NP∪ co- NP) ⊆ IP

2 IP = PSPACE (Without proof.)

Interesting extension: Zero knowledge proof systems
I Verifier does not gain knowledge
I Needs definition of “knowledge”:

Information that can not be efficiently computed
I Used for secrecy properties in cryptography

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 147 / 148

Advanced Complexity Concepts Interactive Proof Systems

Course Outline

0 Introduction

1 Basic Computability Theory
Formal Languages
Model of Computation: Turing Machines
Decidability, Undecidability, Semi-Decidability

2 Complexity Classes
Landau Symbols: The O(·) Notation
Time and Space Complexity
Relations between Complexity Classes

3 Feasible Computations: P vs. NP
Proving vs. Verifying
Reductions, Hardness, Completeness
Natural NP-complete problems

4 Advanced Complexity Concepts
Non-uniform Complexity
Probabilistic Complexity Classes
Interactive Proof Systems

Martin Stigge (Uppsala University, SE) Computational Complexity Course 13.7. - 17.7.2009 148 / 148

	Introduction
	Basic Computability Theory
	Formal Languages
	Model of Computation: Turing Machines
	Decidability, Undecidability, Semi-Decidability

	Complexity Classes
	
	Landau Symbols: The O() Notation
	Time and Space Complexity
	Relations between Complexity Classes

	Feasible Computations: `39`42`"613A``45`47`"603AP vs. `39`42`"613A``45`47`"603ANP
	
	Proving vs. Verifying
	Reductions, Hardness, Completeness
	
	Natural `39`42`"613A``45`47`"603ANP-complete problems
	

	Advanced Complexity Concepts
	Non-uniform Complexity
	Probabilistic Complexity Classes
	Interactive Proof Systems

